Indoor Environmental Quality + Workplace Environment
Hormel Institute - International Center of Research and Technology (HI-ICRT)

April 2017, Minneapolis, MN
Sustainable Post-Occupancy Evaluation Survey (SPOES)
B3 Guidelines

Denise A. Guerin, PhD
(contact: denise@mgdesignresearch.com)
Caren S. Martin, PhD
Martin & Guerin Design Research, LLC

Abimbola Asojo, PhD
(contact: aasojo@umn.edu)
Suyeon Bae, MS
College of Design
University of Minnesota
1.0 Overview

The purpose of this report is to examine the connection between sustainable design criteria used in the design of Hormel Institute’s International Center of Research and Technology (HI-ICRT) facility and occupants’ satisfaction with their work environments located in the facility. The HI-ICRT 2016 building expansion was designed using the B3 Guidelines (formerly known as the Minnesota Sustainable Building Guidelines or MSBG) and completed for occupancy in June 2016. The B3 Guidelines track specific state-funded, B3 buildings as a means of demonstrating real outcomes aimed at the conservation of energy resources, creation and maintenance of healthy environments, and occupants’ satisfaction with their work environments. The Sustainable Post-Occupancy Evaluation Survey (SPOES) was developed to assess human outcomes in workplace, classroom, and residence hall settings in compliance with the B3 Guidelines project tracking requirements. This is a report of occupants’ (hereafter called employees) responses from the survey conducted in April 2017.

This SPOES report focuses on employees’ satisfaction with the physical environment as related to 26 indoor environmental quality (IEQ) criteria such as lighting, thermal, and acoustic conditions in their primary workspaces, i.e., offices. Employees’ satisfaction with the facility (site, building, and interior) and the effect of the facility’s physical environment on their perceptions of their work performance and health also are included. Finally, a brief look at employees’ commuting and physical activities within the building are reported. The report provides descriptive information about employees’ perceptions of the IEQ of their work environments. In addition, this information serves the broader development of knowledge regarding the influence of IEQ on employees.

2.0 Method

SPOES consists of a self-administered, Internet-based, questionnaire submitted to and completed by employees. The SPOES questionnaire has been tested for validity (measures what it is intended to measure) and reliability (repeatability or replicability of findings). Employees rate their level of satisfaction on a Likert-type scale (measurement scale) from 1 (very dissatisfied) to 7 (very satisfied) with IEQ of the facility and their primary workspaces. They also rate the influence of their physical environment on their perception of their work performance and health on a scale from 1 (hinders) to 7 (enhances).

The report provides a descriptive summary of the results stated as a mean (average of all responses), standard deviations (SD) (how different scores are from each other and the mean), and number of responses (N) for each question analyzed. The mean for a 7-point scale is 4.00. Lower or higher means reflect stronger tendencies towards dissatisfaction/satisfaction and hinders/enhances. Means that are close to the center of the scale (4) are considered to be neither dissatisfied/hinders or satisfied/enhances.

When interpreting mean responses, the following labels were used:
- 1.00 - 3.50 dissatisfied (or hinders)
- 3.51 - 4.50 neither dissatisfied (or hinders) nor satisfied (or enhances)
- 4.51 - 7.00 satisfied (or enhances)
An IEQ Score is also calculated for employees’ satisfaction with IEQ criteria in their primary workspaces. This is a statistical combination of all category-level (explained below) IEQ scores, which results in a single IEQ score for all respondents and is reported in an IEQ Scorecard.

2.1 Description of the Questionnaire
Employees first rate their level of satisfaction with the facility (site, building, and interior) and the influence of their physical environment on their perception of their work performance and health. Then they respond to questions about their satisfaction with their primary workspaces in relation to IEQ criteria from the B3 Guidelines. Additionally, employees’ demographic, physical activity, and commuting practice data are collected to provide context for the study.

In the SPOES questionnaire, the 26 IEQ criteria listed below are evaluated. There are two levels of criteria, categories and attributes. As shown in the list, the ‘overall’ criteria are boldfaced and called ‘categories’ or ‘category level’ criteria. A category is broader or more general such as Overall View Conditions or Overall Indoor Air Quality. Some categories have ‘attributes’ or ‘attribute level’ criteria and provide greater detail about the category. For example, Overall Thermal Conditions is a category level question, and there are four attribute level questions related to thermal conditions such as adjustability, air velocity (draft), humidity, and temperature. Overall Acoustic Conditions is a category with attributes of employees’ ability to hear desired sounds and their ability to limit undesired sounds. There are 12 category-level and 14 attribute level questions. Means are calculated and reported for all category and attribute-level criteria.

An IEQ Satisfaction Score is also calculated for employees’ satisfaction with IEQ in their primary workspaces. This is a statistical combination of the 12 category-level criteria only and results in a single, mean IEQ Satisfaction Score for all employees’ satisfaction with the physical conditions of their primary workspaces. Attribute-level criteria are not included in the IEQ Score because unequal weight would be given to criteria that have both category and attribute-level questions.

In the following list, category (boldface) criteria are listed in alphabetical order. If a category has attributes, they are listed with the category.

- **Overall Acoustic Quality**
 - Ability to hear desired sounds
 - Ability to limit undesired sounds
- **Overall Appearance (aesthetics)**
- **Overall Cleaning and Maintenance**
- **Overall Daylighting Conditions**
 - Amount of daylighting
 - Adjustability of daylighting
- **Overall Electric Lighting Conditions**
 - Amount of electric lighting
 - Adjustability of electric lighting
 - Adjustability of task lighting
- **Overall Furnishings**
 - Function of furnishings
 - Adjustability of furnishings
- **Overall Indoor Air Quality**
- **Overall Privacy**
- **Overall Technology**
 - Access to electric outlets
- **Overall Thermal Conditions**
 - Adjustability of thermal conditions
 - Air velocity (drafty/stagnant)
 - Humidity (dry or moist)
 - Temperature (hot or cold)
- **Overall Vibration and Movement**
- **Overall View Conditions**
2.2 Limitations
Employees' participation is voluntary, and responses are self-reported. As is true with all survey research, the responses indicate employees' perceptions. There were no physical measurements, e.g., temperature, humidity, or lighting levels of the environment taken. This study is limited to employees' perceptions.

3.0 Sample Description

3.1 Description of Building
The HI-ICRT facility is located at 801 16th Ave, NE, Austin, MN. The 2016 expansion (see Figure 1) is a three-story, 63,700 square feet addition to the existing Hormel Institute building and includes research labs, research technology space, technology maintenance areas, and support offices such as private offices and workstations. There is also a Live Learning Center that houses a 250-seat auditorium. Only the overall facility and primary workspaces of the 2016 expansion (office and labs) were included in this study. Hormel Institute is a biomedical research center with scientists and collaborators working together to accelerate discovery leading to improved health. Their research contributes to the development of new prevention and treatment therapies for cancer and other chronic diseases (Hormel Institute, 2016).

Figure 1. HI-ICRT with Expansion (Photo courtesy of Hormel Institute)

3.2 Description of Respondents
This survey was administered to 105 employees (part-time, full-time, visiting) with workspace in the facility during April 2017. The response rate to the questionnaire was approximately 27%. Of those responding, 56% were male and 44% were female. The mean age of respondents was 40 years, with a range from 30-63 years of age.
The HI-ICRT expansion was completed and ready for operation in June 2016. Since that time, 68% of respondents reported that they worked at the HI-ICRT facility since the building expansion opened, and 32% of respondents spent less than one year working in the expansion. Relating to hours worked during a typical week at HI-ICRT, 61% of employees reported they spend 40+ hours a week in the facility; 7% spend 30-40 hours a week at HI-ICRT; 32% spend less than 20 hours at HI-ICRT.

Relating to the time employees spend per week in their primary workspace, 64% of employees reported they spend more than 75% of their weekly time in their primary workspace; 18% spend 51-75% of their time in their primary workspace; 14% spend 25-50% of their time in their primary workspace; and 4% spend less than 25% of their time in their primary workspace. These responses indicate the amount of time employees are exposed to IEQ conditions in their workplace environment.

HI-ICRT is a research facility with research laboratories and workplaces with private and shared offices and research labs. Employees indicated that about 40% of them worked in private or shared offices, and 40% worked in labs. The balance of employees’ primary workspaces was a mixture of cubicles and desks in open areas. Employees indicated that 71% of their primary workspaces were located within 15 feet of an exterior window; 21% of the employees were not within 15 feet of an exterior window; and 7% did not know the distance.

4.0 Findings and Discussion

4.1 HI-ICRT Facility (Site, Building, and Interior): Overall Satisfaction, Work Performance, and Health

Employees responded to questions concerning the HI-ICRT facility (site, building, and interior) and their overall satisfaction with the facility, overall perceptions of their work performance in relation to the facility, and their overall perception of their health in relation to the facility. Table 1 shows the means and standard deviations of their responses as well as how the responses are interpreted. Figure 2 is a graph that shows the mean for each question, which is identified with a blue mark. The standard deviation is shown by the green/red, vertical bar with green representing satisfied (or enhanced) and red representing dissatisfaction (or hindered). Gray represents the ‘neither/nor’ range of responses. In cases where there were no dissatisfied responses, the bar may be all green or gray and green. This graph is simply a visual image of the findings from Table 1.

Table 1. HI-ICRT facility - overall satisfaction, work performance, and health

<table>
<thead>
<tr>
<th>Overall</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfaction</td>
<td>6.00</td>
<td>1.08</td>
<td>29</td>
<td>Satisfied</td>
</tr>
<tr>
<td>Work Performance</td>
<td>5.36</td>
<td>1.32</td>
<td>29</td>
<td>Enhanced</td>
</tr>
<tr>
<td>Health</td>
<td>5.52</td>
<td>1.22</td>
<td>29</td>
<td>Enhanced</td>
</tr>
</tbody>
</table>
Results indicate that employees were highly satisfied \((M = 6.00)\) with the HI-ICRT physical environment of the facility (building, site, and interior) and reported that their overall work performance was enhanced \((M = 5.36)\) by the facility. Employees reported that their overall health was enhanced \((M = 5.52)\) by the facility.

4.2 Primary Workspace: Overall Satisfaction, Work Performance, and Health

Employees responded to questions concerning their overall satisfaction and overall perceptions of their work performance and health as related to their primary workspace (e.g., private office, workstation, or research lab). Table 2 shows the means and standard deviations of their responses as well as how the responses are interpreted. Figure 3 is a visual image of the findings from Table 2; an explanation of the graph was given for Figure 2.

Table 2. HI-ICRT primary workspace – overall satisfaction, work performance and health

<table>
<thead>
<tr>
<th>Overall</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfaction</td>
<td>5.70</td>
<td>1.44</td>
<td>27</td>
<td>Satisfied</td>
</tr>
<tr>
<td>Work Performance</td>
<td>5.52</td>
<td>1.34</td>
<td>27</td>
<td>Enhanced</td>
</tr>
<tr>
<td>Health</td>
<td>5.15</td>
<td>1.13</td>
<td>26</td>
<td>Enhanced</td>
</tr>
</tbody>
</table>
Results indicate that employees were satisfied (M = 5.70) with their primary workspace, their overall work performance was enhanced (M = 5.52) by their primary workspace, and their overall health was enhanced (M = 5.15) by their primary workspace.

4.3 Primary Workspace: Satisfaction with Indoor Environmental Quality (IEQ)

Employees responded to questions concerning their satisfaction with IEQ categories (thermal conditions, indoor air quality, acoustic conditions, etc.) related to their primary workspace (e.g., private office, workstation, or other primary workspace). Table 3 shows the means and standard deviations of their responses from highest to lowest mean, as well as how the responses are interpreted. Figure 4 is a visual image of the findings from Table 3; an explanation of the graph was given for Figure 2.

Table 3. HI-ICRT primary workspace - satisfaction with IEQ criteria

<table>
<thead>
<tr>
<th>#</th>
<th>IEQ Criteria (1-26) (Category level criteria are bold face)</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
<th>Interpretation (S = Satisfied) (D = Dissatisfied)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overall vibration and movement</td>
<td>6.07</td>
<td>1.07</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>2</td>
<td>Overall cleaning and maintenance</td>
<td>6.00</td>
<td>1.28</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>3</td>
<td>Amount of electric light</td>
<td>5.86</td>
<td>1.09</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>4</td>
<td>Overall furnishings</td>
<td>5.79</td>
<td>1.37</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>5</td>
<td>Overall appearance (aesthetics)</td>
<td>5.75</td>
<td>1.30</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>6</td>
<td>Access to electric outlets</td>
<td>5.75</td>
<td>1.50</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>7</td>
<td>Ability to hear desired sounds</td>
<td>5.71</td>
<td>1.25</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>8</td>
<td>Overall electric lighting conditions</td>
<td>5.64</td>
<td>1.23</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>9</td>
<td>Air velocity (drafty or stagnant)</td>
<td>5.54</td>
<td>1.48</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>10</td>
<td>Function of furnishings</td>
<td>5.54</td>
<td>1.55</td>
<td>28</td>
<td>Satisfied</td>
</tr>
</tbody>
</table>
Table 3. HI-ICRT primary workspace - satisfaction with IEQ criteria, continued

<table>
<thead>
<tr>
<th>#</th>
<th>IEQ Criteria (1-26)</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Category level criteria are bold face)</td>
<td></td>
<td></td>
<td></td>
<td>(S = Satisfied)</td>
</tr>
<tr>
<td>11</td>
<td>Overall acoustic quality</td>
<td>5.46</td>
<td>1.43</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>12</td>
<td>Overall privacy (sound and visual privacy)</td>
<td>5.43</td>
<td>1.42</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>13</td>
<td>Humidity (dry or moist)</td>
<td>5.41</td>
<td>1.73</td>
<td>27</td>
<td>Satisfied</td>
</tr>
<tr>
<td>14</td>
<td>Adjustability of furnishings</td>
<td>5.36</td>
<td>1.69</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>15</td>
<td>Overall technology</td>
<td>5.36</td>
<td>1.37</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>16</td>
<td>Ability to limit undesired sounds</td>
<td>5.25</td>
<td>1.53</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>17</td>
<td>Adjustability of task lighting</td>
<td>5.25</td>
<td>1.60</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>18</td>
<td>Overall view conditions</td>
<td>5.25</td>
<td>1.72</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>19</td>
<td>Overall daylighting conditions</td>
<td>5.14</td>
<td>1.90</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>20</td>
<td>Amount of daylighting</td>
<td>5.11</td>
<td>1.95</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>21</td>
<td>Adjustability of task lighting</td>
<td>5.04</td>
<td>1.90</td>
<td>27</td>
<td>Satisfied</td>
</tr>
<tr>
<td>22</td>
<td>Overall indoor air quality</td>
<td>5.00</td>
<td>1.56</td>
<td>27</td>
<td>Satisfied</td>
</tr>
<tr>
<td>23</td>
<td>Adjustability of daylighting</td>
<td>4.89</td>
<td>2.06</td>
<td>28</td>
<td>Satisfied</td>
</tr>
<tr>
<td>24</td>
<td>Overall thermal conditions</td>
<td>4.43</td>
<td>1.94</td>
<td>28</td>
<td>Neither S or D</td>
</tr>
<tr>
<td>25</td>
<td>Temperature (hot or cold)</td>
<td>4.11</td>
<td>2.02</td>
<td>28</td>
<td>Neither S or D</td>
</tr>
<tr>
<td>26</td>
<td>Adjustability of thermal conditions</td>
<td>3.46</td>
<td>2.11</td>
<td>28</td>
<td>Dissatisfied</td>
</tr>
</tbody>
</table>

Figure 4. HI-ICRT primary workspace - satisfaction with IEQ criteria (IEQ 1-26 refer to Table 3)
Results indicate that employees were satisfied with 11 of 12 of the IEQ category criteria (see bold faced in Table 3) in their primary workspaces, i.e., means at or above 4.50. Relating to specific IEQ criteria, employees were satisfied with 23 of the IEQ criteria ranging from a mean of 4.89 (adjustability of daylighting to a high of 6.07 (Overall vibration and movement). Employees indicate that they were neither satisfied nor dissatisfied with two IEQ criteria, Overall thermal conditions (4.43), temperature (4.11). They were dissatisfied with one criteria, adjustability of thermal conditions (3.46). These three criteria are ripe for change to improve employees’ satisfaction with their primary workspaces. Potential for change will be addressed in Section 6.2 Recommendations. Further explanation of these scores also can be found in Appendix A. Open-Ended Responses.

4.4 IEQ Satisfaction Scorecard

The IEQ Satisfaction Score is determined by calculating a mean of the 12 ‘Overall’ category level IEQ criteria. At this time, criteria are weighted equally in this calculation as little evidence exists that provides rationale for weighting some criteria heavier than others. The IEQ mean is representative of a fair overall IEQ score and can serve as a benchmark of employees’ satisfaction with the physical environment of their primary workspace. As shown in Figure 5, the IEQ Satisfaction Score for HI-ICRT is 5.44, which shows employees are satisfied with the IEQ of their primary workspace. The large number of IEQ categories with means above 4.5 contribute to this high IEQ Score.

As shown in Table 3, satisfaction with the Overall vibrations and movement and Overall cleaning and maintenance were the categories with the highest satisfaction means (6.00 or higher). Having all but one of the category criteria in the satisfied range shows a high level of employee satisfaction. Please note that the IEQ Satisfaction Score only uses the category level criteria (those labeled ‘Overall’; see section 2.1, paragraph 3 for explanation).
5.0 Physical Activity Engagement and Commuting Practices

In the final section of the survey, employees responded to questions regarding their overall physical activity while at HI-ICRT (site, building, and interior) and their commuting practices.

5.1 Physical Activity Engagement

Providing employees with opportunities for alternative paths of travel around the workplace, e.g., taking stairs as opposed to the elevator, allows them to engage in additional types of physical activities. Engaging in physical travel throughout the work environment can be associated with healthier lifestyles.

Table 4. Overall physical activity (walking, stair use, etc.) affected by the HI-ICRT facility

<table>
<thead>
<tr>
<th>HI-ICRT facility (site, building, and interior)</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall physical activity (walking, stair use, etc.)</td>
<td>5.68</td>
<td>1.04</td>
<td>28</td>
<td>Enhanced</td>
</tr>
</tbody>
</table>

Results indicate that employees felt that HI-ICRT enhanced (M = 5.68) their physical activities (walking, stair use, etc.).

5.2 Commuting Practices

HI-ICRT is located in Austin, MN. The building has a new parking lot available for employees. Table 5 provides results on employees’ primary mode of transportation; Table 6 summarizes commuting distances between home and the HI-ICRT facility; and Table 7 summarizes employees’ ability to commute using alternative choices (walk, public transit, bike, van, or carpool, etc.). These results, although not related to IEQ, do offer insight into employees’ commuting behaviors and opinions. These data can provide important information about commuting practices that can reduce transportation energy consumption.

Table 5. Commuting Practices – HI-ICRT Primary mode of transportation

<table>
<thead>
<tr>
<th>Primary Mode of Transportation (N=28)</th>
<th>Drive Alone (or w/children <16)</th>
<th>Carpool</th>
<th>Public transit</th>
<th>Bicycle or Walk</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuting to HI-ICRT</td>
<td>71%</td>
<td>4%</td>
<td>4%</td>
<td>11%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Related to primary modes of transportation, 71% of employees drive alone (or with children under 16), and the balance carpool, take public transit, or bicycle or walk.

Table 6. Commuting Practices – HI-ICRT Commuting distance traveled

<table>
<thead>
<tr>
<th>Miles Traveled (N=28)</th>
<th>0-5 miles</th>
<th>6-15 miles</th>
<th>16-30 miles</th>
<th>31+ miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home-to-HI-ICRT (One-way)</td>
<td>64%</td>
<td>11%</td>
<td>7%</td>
<td>18%</td>
</tr>
</tbody>
</table>

Results indicate that 64% of employees commuted 0-5 miles one-way between home and the HI-ICRT, followed by 11% who commute 6-15 miles, 7% commute between 16-30 miles, and 18% commute over 31 miles to the HI-ICRT facility. These are one-way miles.
Table 7. Commuting practices – HI-ICRT location and alternative commuting behaviors

<table>
<thead>
<tr>
<th>Alternative Commuting</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability to commute in alternative ways</td>
<td>4.43</td>
<td>1.32</td>
<td>28</td>
</tr>
</tbody>
</table>

Results indicate that location of the HI-ICRT neither hinders nor enhances (M = 4.43) employees’ ability to commute to work in alternative ways, e.g., walk, bicycle, public transit, van or carpool, etc.

6.0 Conclusions

6.1 Summary
A post-occupancy evaluation was conducted of employees of HI-ICRT at approximately 10 months after it was first occupied. This HI-ICRT facility is used as a medical research and technology center. This survey reports the responses from employees and their satisfaction with the physical environment of the facility and their primary workspace. Results indicate that 68% of employees spend more than 30 hours per week in the HI-ICRT facility, and 82% of employees spend more than 50% of their time at HI-ICRT in their primary work space.

The survey included questions related to employees’ satisfaction with the facility (site, building, and interior) and influence of the facility on their work performance and health. Employees were satisfied with the facility (M = 6.00); they found the facility enhanced their work performance (M = 5.36) and enhanced their health (M = 5.52). In addition, similar results were reported when employees were asked these same questions about their primary workspaces (private office, shared office, research labs, etc.). They reported satisfaction (M = 5.70) with their primary workspaces, that their work performance was enhanced (M = 5.52), and their health was enhanced (M = 5.15) by their primary workspace. As the range of scores was from 1-7, scores showed a high level of satisfaction and enhancement.

Most of the survey questions related to employees’ satisfaction with the IEQ criteria in their primary workspaces (private office, cubicles, etc.). Employees’ responses showed they were satisfied with the 23 of the 26 IEQ criteria. The mean satisfaction scores ranged from 4.89 (adjustability of daylighting) to 6.07 (Overall vibration and movement). Again, this shows a positive level of satisfaction. Employees responded neither dissatisfied nor satisfied to two IEQ criteria, Overall thermal conditions (4.43) and temperature (4.11); respondents were dissatisfied with one IEQ criteria, adjustability of thermal conditions (3.46).

From employees’ responses, an IEQ Score was developed and shows respondents’ satisfaction with the IEQ of all category level criteria. For HI-ICRT, the IEQ Satisfaction Score was 5.44. This score reflects the influence of employees’ satisfaction with all but one category (Overall thermal conditions). Finally, employees reported that HI-ICRT enhances (5.68) their physical activity, which is one of the sustainable design criteria that influences occupant behavior.

It seems that employees’ satisfaction is high, but could still be improved by addressing thermal conditions. The three lowest scores relate to this issue. The following recommendations can help address change in these criteria to further improve employees’ satisfaction. Exploring these areas in
more detail and making adjustments may increase overall satisfaction at the primary workspace. It must be noted that the expense of building and operating a facility is second only to employee-related expenses over the life of the building. Therefore, maintaining or improving employees’ satisfaction is a sound investment, which, in turn affects their performance and their health.

This study investigated employees’ satisfaction with the facility and primary workspaces. IEQ satisfaction is individual, but results of the survey show a central tendency of moderate to high satisfaction with the facility and most of the IEQ categories. The results can be used as a diagnostic tool to aid in improving IEQ conditions for employees and to set the benchmarks from which improvement can be measured in the future.

6.2 Recommendations

Most IEQ criteria satisfaction scores are in the positive direction, however, improvement on the ‘neutral’ and dissatisfied criteria may be possible. For IEQ categories that can be physically measured (e.g., thermal, acoustic, and lighting), it is recommended that these measurements be taken in the primary workspaces. Specific recommendations for the most common areas of occupants’ concern follow:

Acoustic Conditions

- Identify acoustic criteria for overall requirements.
- Determine if any task areas differ now from their original spatial layout/use (i.e., collaborative work spaces now located adjacent to focused work areas, individual workstations).
- Develop specialized acoustical performance requirements to support functional programming employees’ tasks (e.g., sources of recurrent noise that need to be controlled, special user populations that may have distinct auditory performance limitations, or multiple uses of building spaces that may have different acoustic criteria). Identify and apply appropriate acoustics modeling software for the project.
- Measure acoustic performance onsite with full building systems (heating, ventilation, and air conditioning) running.
- Identify employees’ privacy concerns via focus groups and/or log complaints relative to acoustical conditions for further evaluation.
- Consider employees’ tasks within shared spaces to determine if spatial layout changes can be made for increased acoustic control.

Lighting Conditions

- Identify employees’ lighting performance criteria that are to be met to achieve goals by conducting onsite measurements of existing illumination and compare them to standards for employees’ tasks as identified by the Illuminating Engineering Society (IES).
- Determine if any task areas differ now from original intent to be sure illumination quantity and quality are not impeded by physical changes to the space (i.e., walls, ceilings, furnishings, fixtures, or equipment).
- Develop additional quality lighting criteria as needed for special facility (e.g., influence of daylight quality or quantity) or employee (e.g., age, task duration) issues.
- Log complaints related to lighting conditions for further evaluation.
- Identify poor lighting conditions in the workspace caused by a lack of control over daylighting, which can cause glare and eyestrain.
Personal Adjustability
• Determine what adjustability issues arise with temperature, lighting, or furnishings via a focus group.
• Identify personal, individual problem areas and relate them to other IEQ issues via a log of complaints relative to adjustability.
• Provide education to employees about any existing/achievable adjustment options, e.g., furnishings, air diffusers, lighting, temperature control, etc.

Privacy Conditions
• Identify employees’ privacy concerns via focus groups or log complaints relative to privacy to determine if visual or audio privacy is most affected.
• Determine if any task areas or responsibilities differ from original intent and develop alternatives or modifications.
• Consider adding noise masking equipment and/or visual screening depending on the nature of the complaints.
• Document and compare acoustic privacy problem areas with acoustic measurements to pinpoint specific problem areas.

Thermal Conditions
• Measure thermal performance conditions on site.
• Log complaints related to thermal conditions for further evaluation.
• Determine special thermal comfort requirements or problems that may be encountered in the building due to physicality of work activities, duration of sitting, or design/layout considerations. Focus groups can be useful in identifying problem locations.
• Determine if any employees’ task areas differ now from original layout to determine if air flow is meeting systems design intent.
• Review conditions that affect thermal comfort using ASHRAE Standard 55-2004 or Human Factors Design Handbook (see B3 Guidelines).
Appendix A. Open-Ended Responses

Employees had the opportunity to raise specific concerns on the overall facility and their primary workspaces. Important information can be gleaned from the open-ended survey responses. HI-ICRT employees made few comments. However, the comments do give insight into specific issues that should be addressed by building management. The comments are summarized below.

Cleaning and Maintenance
Cleaning is sporadic and inconsistent.

Lighting
Almost all natural light is blocked even though windows are nearby - very poor design in that respect.

Technology
Cell phone reception is difficult and inconsistent.

Thermal
Freezing almost all the time.

Ventilation
Cold air blowing directly on people.
Appendix B. Glossary

Descriptive statistics
Statistics used to summarize large sets of data (i.e., means, frequencies, medians). Descriptive statistics describe only the sample under consideration and are not intended to infer results to the larger population.

Frequency
A descriptive statistic that provides information about how many of a particular response or measurement is observed.

Likert-type scale
A measurement technique, employed in questionnaires and interviews, that utilizes a range of standardized response categories such as strongly agree, agree, etc.

Mean
The average score of a set of data calculated by adding all scores together, then dividing by the number of scores.

N
The number of subjects or participants responding to the questions, or a single question, in the study.

Reliability
The repeatability or replicability of findings; the same results are produced each time. Instruments and procedures should produce the same results when applied to similar people in similar situations, or on a second occasion.

Standard deviation
A statistic used to measure the variability of a group of scores (how different scores are from each other and the mean). For example, if the range of scores is 1-7 and the mean (average) is 5.0 with a standard deviation of 1.0, then the scores are closely clustered around the mean, i.e., there is one unit of variation among all scores. If the mean was 5.0 and the SD was 3.0, there is a broader range of variation among the scores...a smaller SD means the scores are similar and the mean score is likely to be more accurate and more useful (this is better!).

Validity
The extent to which an instrument or procedure measures what it is intended to measure (internal validity). The generalizability of results to another population (external validity).