HIGH PERFORMANCE WALLS

CLADDING ATTACHMENT SYSTEMS AND THEIR IMPACT ON CONTINUOUS EXTERIOR INSULATION EFFICIENCY

Document Summary: This document is meant to serve as a guide for designers and builders to compare the thermal performance of different cladding attachment systems. The first section is a catalogue of products, split into brick veneer and cladding finish systems. The second section presents thermal modeling results of these systems from a study conducted by Steven Winter Associates (SWA).

Thermal Efficiency: percentage of continuous insulation R-value that is effective.

- 100% thermal efficiency = continuous insulation without thermal bridging
- 20% thermal efficiency = continuous insulation derated to 20% of installed R-value
Galvanized Girts

- **Description**: Typical z-girts are usually galvanized steel. Most projects use these to support their cladding systems.

- **Thermal efficiency per SWA**: 43%-53%
 - 53% for Steel backup
 - 43% for CMU backup

Fiberglass Girts

- **Description**: Fiberglass girts are installed and used the same way as typical metal z-girt. The fiberglass material reduces thermal bridging.

- **Thermal efficiency per SWA**: 91%-95%
 - 91% for Steel backup
 - 95% for CMU backup

Thermoset Resin Girts

- **Description**: These girts have a low thermal conductivity. Made of fire resistant resin material. Can be spaced 16” or 24” o.c. and is very strong.

- **Thermal efficiency per SWA**: 96%
 - 96% for Steel backup
 - 96% for CMU backup

Example Products: Green Girt- Simple Z, Armatherm ZGirt
For Cladding Finish Systems: Clips

Galvanized Metal Clips

Description
These clips are usually galvanized steel and are used to support rainscreen and panel cladding systems.

Thermal efficiency per SWA: 46-59%

46% for Steel backup
59% for CMU backup

Example Products:
A-Clip, MFSSCHAN

Stainless Steel Clips

Description
Replacing galvanized steel clips with stainless steel ones can greatly reduce the thermal conductivity.

Thermal efficiency per SWA: 63-74%

63% for Steel backup
74% for CMU backup

Example Products:
Alpha Brackets

Aluminum Clips

Description
Aluminum clips are light weight and strong. They are a more elastic and non corrosive alternative to traditional metal clips.

Thermal efficiency per SWA: 38-52%

38% for Steel backup
52% for CMU backup

Example Products:
Pos-I-Tie Thermal Clip, Nvelope NV1 Thermal Clip

Fiberglass Clips

Description
Fiberglass clips have a much lower thermal transmittance coefficient than any metal equivalent.

Thermal efficiency per SWA: 64-79%

64% for Steel backup
79% for CMU backup

Example Products:
Cascada Clip

Thermal Stop Clips

Description
This clip has a plastic thermal stop at the base and head to help mitigate thermal bridging.

Thermal efficiency per SWA: 67-80%

67% for Steel backup
80% for CMU backup

Example Products:

Standard Product

For Cladding Finish Systems: Clips

Steven Winter Associates, Inc.
NEW YORK, NY | WASHINGTON, DC | NORWALK, CT

CALL US 866.676.1972 | SWINTER.COM
For Brick Veneer Systems: Ties

Galvanized Steel Brick Ties
- **Description:** Typical brick ties are galvanized steel. Most brick veneer projects use this type of product.
- **Thermal efficiency per SWA:** 75-84%
 - 75% for Steel backup
 - 84% for CMU backup
- **Example Products:** 2 Seal Tie Thermal, Original Pos-I-Tie

Stainless Steel Brick Ties
- **Description:** Stainless steel ties are less conductive than galvanized steel ties.
- **Thermal efficiency per SWA:** 87-93%
 - 87% for Steel backup
 - 93% for CMU backup
- **Example Products:** 2 Seal Tie Thermal, Original Pos-I-Tie

Thermal Break Brick Ties
- **Description:** This stainless steel brick tie has a plastic coating, which reduces thermal bridging.
- **Thermal efficiency per SWA:** 88-94%
 - 88% for Steel backup
 - 94% for CMU backup
- **Example Products:** 2 Seal Tie Thermal Wing Nut Anchor

Basalt Fiber Wall Ties
- **Description:** Basalt fiber is a material made from fine fibers of basalt. They tend to be stronger and lighter than stainless steel wall ties and much less thermally conductive.
- **Example Products:** Teplo Ties, Galen Wall Ties

Connectors
- **Description:** These are used in place of brick ties. The combination of horizontal and vertical elements increases strength despite its small size.
- **Example Products:** Block Shear Connector

Steven Winter Associates, Inc. 2017
For Brick Veneer Systems: Angles

Typical Shelf Angle

Typically, shelf-angles are made of galvanized steel.

Thermal efficiency per SWA: 58-69%

- 58% for Steel backup
- 69% for CMU backup

Stand-off Shelf Angle

This stand-off shelf angle allows insulation to be installed behind it. The bracket can be used with readily available shelf angles.

Thermal efficiency per SWA: 73-81%

- 73% for Steel backup
- 81% for CMU backup

Example Products:

- FAST (Fero Angle Support Technology)

Shelf Angle with Thermal Break

The thermal break plate is installed between the shelf angle and bracket to reduce the thermal bridge at those points.

Thermal efficiency per SWA: 63-74%

- 63% for Steel backup
- 74% for CMU backup

Example Products:

- Armatherm Shelf Angle
Results: Brick Veneer

<table>
<thead>
<tr>
<th>Brick Ties</th>
<th>Standard Shelf Angle</th>
<th>63%</th>
<th>69%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless Brick Ties</td>
<td>Standard Shelf Angle</td>
<td>74%</td>
<td>69%</td>
</tr>
<tr>
<td>Galvanized Brick Ties</td>
<td>Standoff Shelf Angle</td>
<td>75%</td>
<td>73%</td>
</tr>
<tr>
<td>Standoff Shelf Angle</td>
<td>Traffic Ties</td>
<td>81%</td>
<td>73%</td>
</tr>
<tr>
<td>Thermally Broken Shelf Angle</td>
<td>Traffic Ties</td>
<td>74%</td>
<td>63%</td>
</tr>
<tr>
<td>Standard Shelf Angle</td>
<td>Thermal Ties</td>
<td>87%</td>
<td>94%</td>
</tr>
<tr>
<td>Standard Shelf Angle</td>
<td>Stainless Ties</td>
<td>88%</td>
<td>93%</td>
</tr>
</tbody>
</table>

- CMU Backup
- Steel Backup
Results: Panel Cladding

Clip and Rail

- Thermal Stop Clip and Rail
- Fiberglass Clip and Rail
- Stainless Clip and Rail
- Galvanized Clip and Rail
- Aluminum Clip and Rail

Girts

- Thermoset Resin Girt
- Fiberglass Girt
- Galvanized Girt

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

CMU Backup
Steel Backup