D4-71. Pathways to SB 2030: Three Minnesota Case Studies

Thank you to our sponsor:

Thursday, November 11, 2021 12:30 – 1:30 pm

Pathways to SB 2030: 3 MN Case Studies November 11, 2021

Learning Objectives

- 1) Understand the SB 2030 Energy Standard program objectives and compliance pathways.
- 2) Compare and contrast **renewable energy strategies** from the hierarchy of options in SB 2030 that can be incorporated into project planning, design, and development.
- Provide guidance for project design teams to evaluate energy efficient envelope options during project planning and design.
- 4) Incorporate **decarbonization strategies** into project planning, design, and development to ensure energy and carbon reductions in building operations.

B3/SB 2030 Programs and Tools

Optimize use of resources to achieve performance requirements.

Evaluate success of design strategies through early and repeated modeling.

Ensure project is meeting performance requirements.

ENERGY EFFICIENT

POST-OCCUPANCY

OPERATIONS

EVALUATION

SB 2030

Meet energy performance targets (Energy Standards) that reduce the use of carbon producing fuel for building operations* by:

- 60% (for buildings designed) in 2010
- 70% in 2015
- 80% in 2020
- 90% in 2025
- 100% in 2030

*from a baseline of representative buildings in existence in 2003

Reduction targets are now the same for new construction and renovations

Building Energy Consumption from Carbon Producing Fuel

SB 2030 Process

site renewable options as necessary.

Energy Hierarchy

Example

- Maximize use of energy efficiency and on-site renewables
- Off-site renewables can be used to get the rest of the way to the SB 2030 Standard

Alternative Compliance Paths

- **Small Buildings Method**: a prescriptive approach available for projects under 20,000sf
- Partial Mechanical Upgrades: an alternative approach for renovations that are not replacing the full mechanical systems
- Wastewater Treatment Facilities: a process that includes benchmarking existing facility, documenting potential energy conservation measures, and providing anticipated performance metrics

Energy Standard Tool

- Calculates SB 2030 Standard using basic project information
- Can produce a design model for SB 2030 compliance
- Incorporates renewable
 energy generation
- Includes cost-effectiveness test

 NEO Analysis 	× +							-	
→ C 🔒 demoapp.nete	energyop	timizer.com/v360/	/analysis?id=a	adbec037-f641-4	8da-8de5-11e694	51bfdf&licensel	d=ca8090d3-632d	-4 Q 🛣	*
SB 2030 Rating - New	Project	~		Building HVAC	Rating			Save	
20	30 Energ	gy Standard		•••		2030 E	nergy Standard		
D			(R	D			R	
0 20 Energy	40 VUSe Inten	60 sity (<u>kBtu/ft²/yrs</u>)	80	100	0	10 CO2e Inte	20 ensity (<u>lbm/ft²/yrs</u>)	30	40
Strategy Selection +	Add	🗉 Summary 🛛 🔎	Key Parameters	ľ				C	🕈 Filt
				Savings vs Propose	ed				
Strategy		Electric Peak	Electric <u>kWh</u>	Gas Therm	Energy Cost	EUI <u>kBtu/ft²/yrs</u>	Inc. Cost ***	Payback 🔺	
Reduced lighting power density Office	•••	-0.8	31,127	0	\$3,218	0.9	<u>\$8,175</u>	2.5	
On-site solar photovoltaics Facility	***	0	382,556	0	\$39,556	10.9	<u>\$128,274</u>	3.2	
As-designed glazing Office		13.1	14,418	0	\$1,489	0.4	<u>\$6,082</u>	4.1	
Occupancy sensor controls Office	***	-0.5	9,742	0	\$1,005	0.3	<u>\$7,804</u>	7.8	
Demand control ventilation for Office VRF		0.5	19,107	0	\$1,974	0.5	<u>\$49,865</u>	25.3	
Occupancy sensor control of terminal boxes for Office VRF	***	-3.3	4,293	0	\$441	0.1	<u> 530,045</u>	68.1	
increased wall assembly R-value Help		-0.7	-650	0	-\$70	0.0	-\$1,325	n/a	

SB 2030 Analysis

Predicted v. Operational Energy

B3 Case Studies Database

Name	Organization	City	Building Type <u>(s)</u>	Construction Type	Building Area (<u>sf</u>)	Occupancy Date	Design Energy – SB 2030 Standard (kBtu/sf-yr)	Design Energy – Design (kBtu/sf-yr	Design Energy – Ratio) (Design/Standard)	Design Energy – Graphic (Design/Standard)
Apple Valley Bus Layover Facility	Minnesota Valley Transit Authority	Apple Valley	Transit Facility	New Construction	509	1/15/2015	204	62	0.30	-
Hennepin County Library - Brooklyn Park	Voluntary	Brooklyn Park	Library	New Construction	39,385	8/30/2016	70	29	0.41	•
Bemidji Regional Public Television Station	Minnesota Department of Employment and Economic Development	Bemidji	Television Station, Office	New Construction	16,789	3/3/2015	116	49	0.42	-
The Hormel Institute Medical Research Center	Minnesota Department of Employment and Economic Development	Austin	Laboratory	New Construction	63,700	6/1/2016	300	132	0.44	•
UMTC Mechanical Engineering Infrastructure	University of Minnesota	Minneapolis	Laboratory, Office, Classroom	Renovation	144,000	9/1/2019	305	136	0.45	-
Wells Street Houses	City of Saint Paul	Saint Paul	Housing	New Construction	17,241	1/6/2015	70	31	0.45	•

casestudies.b3mn.org

ALLİİANCE

University of Minnesota Clinical Research Facility

SB 2030 Energy Standard

SB 2030 Energy Standard

80%

Program Summary

Program Elements

Program Elements

Existing Site Campus Diagram

Building Section and Program Stack

33,000 SF PARKING (NOT PART OF TOTAL) 56 PARKING STALLS

Organizing Principles: Modules

Clinical Modules

10 EXAM 1 PROCURE +SUPPORT

Office Modules

	100 000	
<u> </u>		

Lab Modules

Site Access for Vehicles and Pedestrians (View from Southeast)

Site Access for Vehicles and Pedestrians (View from Northwest)

Team Effort for High Performance

Energy and Atmosphere

Energy Use Intensity

	0	50	100 Energy Use Inte	150 nsity (kBtu/SF)
CBECS 2003 Healthcare: East North Central Average				
	-			
UMN - PWB				
Olvin - Masoliic	-			
LINAN Macanic	-			
UMN - Mayo Building				
on a boynton	-			
LIMN - Boynton	-			
UMN - CSC B3 70% Baseline				
ASIMAL SOLT-2007 (Outpatient ficalitical)	-			
ASHRAF 90 1-2007 (Outpatient Healthcare)	-			
ASHRAE 90.1-2010 (Outpatient Healthcare)				
ASTINAL 105.5F (Fublic Neview) Willinitum	-			
ASHRAF 189 3P (Public Review) Minimum	-			
SB 2030 Target 70%- Hospital/Clinic (stand alone)				
SB 2030 Target 70% - Hospital/Clinic (District)	-			
	-			
SB 2030 Target 80%- Hospital/Clinic (stand alone)	-			
	le l			

SB 2030 Energy Standard

Energy Leader		PD D	FD
E.1 Energy Use		REC	UIRE
E1A. Meet SB 2030 Energy Standards		💼 Read The G	uidelin
Fields in yellow are editable. Fields in blue are calculated. Fields in gray are not applical	ble or disabled at this p	phase.	
f you are requesting to use the Small Buildings Method or other alternative path as possible to begin the review process to verify specific path requirements and in tool entries. Data collected as part of the B3 and SB 2030 programs will be publicly Database.	please contact <mark>guide</mark> n order to enable the y accessible, includin	elines@b3mn.org a e alternate path tr g on the B3 Case S	as soo acking tudie
E1A2A. <u>Click here to download the MN SB 2030 Compliance and Reporting Instructions</u>			
	Energy Stand	ard Tool	0
E1A3B. Which method are you using to calculate your Energy Standard? Launch the SB 2030 Standards Tool	Energy Standa	ard Tool 🔹	0
E1A3B. Which method are you using to calculate your Energy Standard? Launch the SB 2030 Standards Tool	Energy Standa	kBtu/s.f./yr.	0
E1A3B. Which method are you using to calculate your Energy Standard? Launch the SB 2030 Standards Tool E1A5K. SB2030 Energy Standard Note: Design Energy and Design Carbon Emissions values are referenced from cor Please provide consumption data before attempting compliance with E.1C in the	Energy Stands 73 nsumption information Design and Final Design	kBtu/s.f./yr. on collected in E.11 ign submissions.	Ø D.
E1A3B. Which method are you using to calculate your Energy Standard? Launch the SB 2030 Standards Tool E1A5K. SB2030 Energy Standard Note: Design Energy and Design Carbon Emissions values are referenced from cor Please provide consumption data before attempting compliance with E.1C in the E1A6. Design Energy Use per Square Foot	Energy Stands 73 Insumption information Design and Final Design 0	kBtu/s.f./yr. on collected in E.11 ign submissions. kBtu/s.f./yr.	0 D.
E1A3B. Which method are you using to calculate your Energy Standard? Launch the SB 2030 Standards Tool E1A5K. SB2030 Energy Standard Note: Design Energy and Design Carbon Emissions values are referenced from cor Please provide consumption data before attempting compliance with E.1C in the E1A6. Design Energy Use per Square Foot E1A7. Design Total Energy Use	Energy Stands 73 Insumption information Design and Final Design 0 0	kBtu/s.f./yr. on collected in E.11 ign submissions. kBtu/s.f./yr. kBtu/yr.	0 D. 0
E1A3B. Which method are you using to calculate your Energy Standard? Launch the SB 2030 Standards Tool E1A5K. SB2030 Energy Standard Note: Design Energy and Design Carbon Emissions values are referenced from cor Please provide consumption data before attempting compliance with E.1C in the E1A6. Design Energy Use per Square Foot E1A7. Design Total Energy Use E1A8E. SB2030 Energy Standard Carbon Footprint	Energy Stands 73 Insumption information Design and Final Design 0 0 17	kBtu/s.f./yr. on collected in E.11 ign submissions. kBtu/s.f./yr. kBtu/yr. lb.CO2e/s.f./yr	0 D. 0

Energy Conservation Measures: HVAC Strategies

Energy Conservation Measures: Energy Recovery

Energy Conservation Measures: Run Around Loop

Renewable Energy: UMN Solar

Indoor Environmental Quality

Daylighting

Site and Water

Future Land Use: 30 Year Horizon

Stormwater Management

Mississippi Flyway

Rufa Red Knot

Piping Plover

Mississippi Flyway

Bird Safe Glazing

What's Next

Existing Site Campus Diagram

Health Discovery Hub Clinical Research for Answers + Better Health

Thank you to the University of Minnesota Thank you to our partner ZGF and the entire team:

AEI EVS Damon Faber MBJ Walker Consultants 4RM+ULA Kvernstoen, Rönnholm & Assoc. Lerch Bates Rippe Associates

CommonBond Highland Bridge Matthew Finn, AIA

Highland Bridge Plan

Walkable neighborhood Commercial corridor River access New public park

PROJECT TEAM

Owner:

CommonBond

Architect: MEP engineer: Energy model: LHB Cain Thomas Cain Thomas

General Contractor:

Ryan Companies

EDA program: SB 2030 support: Willdan CSBR, w/ CEE

Rendering by Ryan Companies

APPROACH

Strategies identified for analysis:

Continuous insulation Increased roof insulation Window U-factor Enhanced efficiency HVAC Photo voltaic array

VERIFICATION

Continuous insulation

Baseline:	2x8 w/ batts
Enhanced:	3" mineral wool over 2x8 w/ batts

Roof insulation

Baseline:	R-40
Enhanced:	R-50

- FIXED HEAD

CHECKRAIL

- VENT SILL

(FH

(CR

(vs)

VERIFICATION

Window performanceTriple paneU0.22SHGC0.44

Double pane U 0.27 SHGC 0.28

VERIFICATION

Enhanced efficiency HVAC in dwelling units VRF, DOAS with full energy recovery

Magic pak

Air-source heat-pump with backup electric radiant

2-pipe fan coil fed by boiler and split dx cooling

VERIFICATION

Photovoltaic array on roof

40kw Matched common area loading

Payback: 11 years with tax incentive 16 years without tax incentive

Windows:

Energy star for northern climates U = 0.27, SHGC = 0.28

Walls

U = 0.051, code compliant 2x8 w/ batts in cavity

Roof

R-50 average, all above vapor barrier

Glass Thickness	Type of Glazing NFRC Certified Product #		Glass (mm)		Glass (mm)		Performance Values ₁				Shaded Areas Mee ENERGY STAR® Perform Criteria in Zones Sho				
		Evt	Int	Gap Fill	ctor =	сj	5	8	U. S.				Canada ₂		
			Ext.	int.		LFa	SH	5	U		Zo	ne		ER	Zone
/ent										Ν	NC	sc			CA
11/16"	Clear IG	PEL-N-102-00822-00001	2.5	2.5	Air	0.48	0.59	0.62	43						
	with grilles-between-the-glass	PEL-N-102-00822-00002				0.48	0.53	0.55	43						
11/16"	Clear IG	PEL-N-102-00822-00003	3	3	Air	0.48	0.59	0.62	43			1			0
	with grilles-between-the-glass	PEL-N-102-00822-00004				0.48	0.53	0.55	43						
11/16"	Advanced Low-E IG	PEL-N-102-00853-00001	2.5	2.5	Argon	0.31	0.28	0.53	57	1					
	with grilles-between-the-glass	PEL-N-102-00853-00002				0.31	0.26	0.47	57						
11/16"	Advanced Low-E IG	PEL-N-102-00853-00003	3	3	Argon	0.31	0.28	0.53	57	1					
	with grilles-between-the-glass	PEL-N-102-00853-00004				0.31	0.26	0.47	57			-			
11/16"	SunDefense™ IG	PEL-N-102-00867-00001	2.5	2.5	Argon	0.30	0.21	0.49	57	1	NC	SC	S		
	with grilles-between-the-glass	PEL-N-102-00867-00002			0	0.30	0.19	0.43	57		NC	SC			
11/16"	SunDefense™ IG	PEL-N-102-00867-00003	3	3	Argon	0.30	0.21	0.49	57	1	NC	SC			
	with grilles-between-the-glass	PEL-N-102-00867-00004			0	0.30	0.19	0.43	57		NC	SC			
1/16"	AdvancedComfort Low-E IG	PEL-N-102-00879-00001	2.5	2.5	Argon	0.27	0.28	0.52	46	N	NC				
	with grilles-between-the-glass	PEL-N-102-00879-00002			Ŭ	0.27	0.25	0.46	46	N	NC	SC	S		
1/16"	AdvancedComfort Low-E IG	PEL-N-102-00879-00003	3	3	Argon	0.27	0.28	0.52	46	N	NC				
	with grilles-between-the-glass	PEL-N-102-00879-00004				0.27	0.25	0.46	46	N	NC	SC	S		
1/16"	NaturalSun Low-E IG	PEL-N-102-00841-00001	2.5	2.5	Argon	0.32	0.52	0.60	57						
	with grilles-between-the-glass	PEL-N-102-00841-00002				0.32	0.47	0.53	57						
1/16"	NaturalSun Low-E IG	PEL-N-102-00841-00003	3	3	Argon	0.32	0.52	0.60	57	1	-				
	with grilles-between-the-glass	PEL-N-102-00841-00004			0	0.32	0.47	0.53	57						
/ent – v	with Foam Insulation														
1/16"	Advanced Low-E IG	PEL-N-102-00927-00001	2.5	2.5	Argon	0.28	0.28	0.53	58		NC				
	with grilles-between-the-glass	PEL-N-102-00927-00002				0.28	0.26	0.47	58		NC				
11/16"	Advanced Low-E IG	PEL-N-102-00927-00003	3	3	Argon	0.28	0.28	0.53	58	1	NC				
	with grilles-between-the-glass	PEL-N-102-00927-00004				0.28	0.26	0.47	58		NC				
1/16"	SunDefense IG	PEL-N-102-00941-00001	2.5	2.5	Argon	0.28	0.21	0.49	58	1	NC	SC	S		
	with grilles-between-the-glass	PEL-N-102-00941-00002			J	0.28	0.19	0.43	58		NC	SC			-
11/16"	SunDefense IG	PEL-N-102-00941-00003	3	3	Argon	0.28	0.21	0.49	58	1	NC	SC			
	with arilles-between-the-alass	PEL-N-102-00941-00004			5	0.28	0.19	0.43	58		NC	SC	S		
1/16"	AdvancedComfort Low-E IG	PEL-N-102-00953-00001	2.5	2.5	Argon	0.24	0.28	0.52	46	N	NC				
	with grilles-between-the-glass	PEL-N-102-00953-00002			Jugan	0.24	0.25	0.46	46	N	NC	SC	S		-
1/16"	AdvancedComfort Low-E IG	PEL-N-102-00953-00003	3	3	Argon	0.24	0.28	0.52	46	N	NC				
	with grilles-between-the-glass	PEL-N-102-00953-00004	1	-	- 9-11	0.24	0.25	0.46	46	N	NC	SC	S		
1/16"	NaturalSun Low-E IG	PEL-N-102-00915-00001	2.5	2.5	Argon	0.29	0.52	0.60	57	N					-
	with grilles-between-the-glass	PEL-N-102-00915-00002	210		3011	0.29	0.47	0.53	57	N					
1/16"	NaturalSun Low-E IG	PEL-N-102-00915-00003	3	3	Argon	0.29	0.52	0.60	57	N					
	with arilles-between-the-alass	PEL-N-102-00915-00004	-	-	- gen	0.29	0.47	0.53	57	N					-

R-Value = 1/U-Factor SHGC = Solar Heat Gain Coefficient VLT % = Visible Light Transmission CR = Condensation Resistance ER = Canadian Energy Rating

For center-glass values, see the Product Performance section. See the Product Performance section for more detailed information or visit www.energystar.gov for Energy Star guidelines.

(1) Gizing performance values are calculated based on NFRC 100, NFRC 200 and NFRC 500. ENERGY STAR[®] values are updated to 2016 (Version 6) criteria.
(2) The values shown are based on Canada's updated ENERGY STAR[®] 2020 initiative.

Mechanical strategies

All-electric dwelling unit HVAC

Terminal equipment: Fan coil

- Heating: Air-source heat-pump, electric radiant
- Cooling: Air-source heat-pump
- Fresh air: Duct from exterior into return air
- Exhaust: Ducted range hood & bath exhaust

Common area HVAC:

High efficiency gas furnaces, High-SEER dx cooling, Electric unit heaters

Hot water:

95 eff. Gas-fired domestic water heaters, very low flow fixtures throughout

Lighting:

All LED fixtures Occupancy sensors

Appliances:

Energy star appliances

Balance: efficiency, renewables, REC's

12-year payback Fan-coil, standard wall, double-pane window

On-site renewables

Very close, 15 years without tax incentives, 10 years with. PV ready, with an alternate written into documents

Renewable energy credits

Estimated at roughly \$20,000 20 kbtu/sf/year delta (42 proposed, 22 target)

HVAC:

Still see plenty of HE magic paks, the system here shows a lot of promise.

Envelope:

Typical 4-story projects with Minnesota Housing funding will be required to use continuous insulation in 2022.

Renewables:

We were seeing some PV; commodities market is chewing up contingency funding.

Dorothy Day Place:

Very different, larger, large open spaces, mixed program, district energy, full ERV, chilled beams, all continuous insulation.

Stryker Apartments:

Very similar, 3 fan coils / condenser, ownerpaid electric utility, commercial elec rate

Simpson:

Similar size, very different program, mixed program, pursuing funding for geothermal with every finger and toe crossed

H

Pathways to SB2030 lessons from west side flats, st. paul, minnesota

A'21MN Conference November 11, 2021

site plan

passive house methodology (phius)

PASSIVE STRATEGIES REDUCE ENERGY DEMAND

Airtight Envelope Super Insulated / Thermal Bridge Free High Performance Windows & Doors

Energy Recovery Efficient Systems

ACTIVE STRATEGIES MEET ENERGY DEMAND

meeting the targets: annual energy use

site | kBtu/GSF/year

project metrics

Occupants	227
GSF	97,519
iCFA	93,010
Envelope Area	88,068
Envelope Area / iCFA	0.95
iCFA / person	410

Annual Cooling Dema

Peak Heating Load

Peak Cooling Load

..

....

a'21mn conference november 2021 PATHWAYS TO SB2030: LESSONS FROM WEST SIDE FLATS screenshot from PHIUS Space Conditioning Criteria Calculator v2 content © precipitate and kaas wilson 2021

Conditioning Criteria						
ind	5.5	kBTU/ft²yr				
and	5.8	kBTU/ft²yr				
I	5.8	BTU/ft ² hr				
1	2.9	BTU/ft ² hr				

energy targets

WITHOUT SOLAR

WITH SOLAR

screenshots from WUFI Passive

project challenges

- Timeline
- Passive House comes late to the table
- Starts and Stops (financing)
- Type IIIB Construction above a Podium

Fire treated lumber

5 stories, so NFPA 285 testing required

This was the first Passive House project for

the Architect, Engineer, and Contractor

- 3/25 Site meeting with Sherman Associates Project Manager to discuss potential project. not Passive House
- 5/26 St. Paul Design Center Design Development Review workshop not Passive House
- 6/13 First discussion with City and Onion Flats (initial Passive House Consultants)

The Developer spent the next year working with City, Onion Flats and Frana (General Contractor) to figure

- 1/1 Begin exploration of four different exterior wall assembly options (challenge with a IIIA construction type)
- 3/2 Begin exploration for the MEP systems on the building centralized vs. decentralized systems

- 7/11 St. Paul Sustainable Building Policy implemented/engaged hybrid approach of Passive House and 10 other

3/3 - Alternate compliance forms submitted to Building Official to meet Passive House requirements

collaborative design workshops

passive house envelope: first floor

passive house envelope: section

passive house envelope: garage

passive house envelope

 $1 \frac{1}{2} = 1' - 0''$

Exterior Wall - Floor Truss @ Ext. Wall 15 Section - 2HR WALL1 1 1/2" = 1'-0"

11

T

1

window details

typical unit hvac plan

a'21mn conference november 2021 PATHWAYS TO SB2030: LESSONS FROM WEST SIDE FLATS content © precipitate and kaas wilson 2021

loop water system

a'21mn conference november 2021 PATHWAYS TO SB2030: LESSONS FROM WEST SIDE FLATS content © precipitate and kaas wilson 2021

energy recovery system (erv)

DROP EXHAUST AIR IN MECHANICAL ROOM TO AVOID OUTSIDE AIR

SUPPLY DUCT. (TYP)

PROVIDE FIRE SMOKE DAMPER WHERE DUCTS LEAVE CHASE (TYP)

a'21mn conference november 2021 PATHWAYS TO SB2030: LESSONS FROM WEST SIDE FLATS content © precipitate and kaas wilson 2021

