



## CLIMATE PROJECTIONS

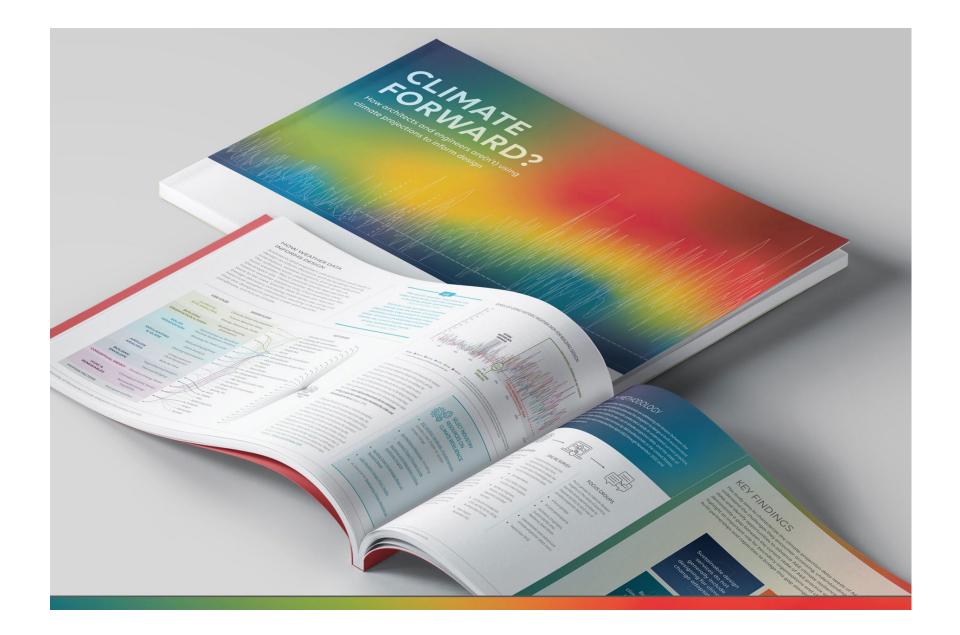
and SB2030



## Menti.com enter code: 3325 8487

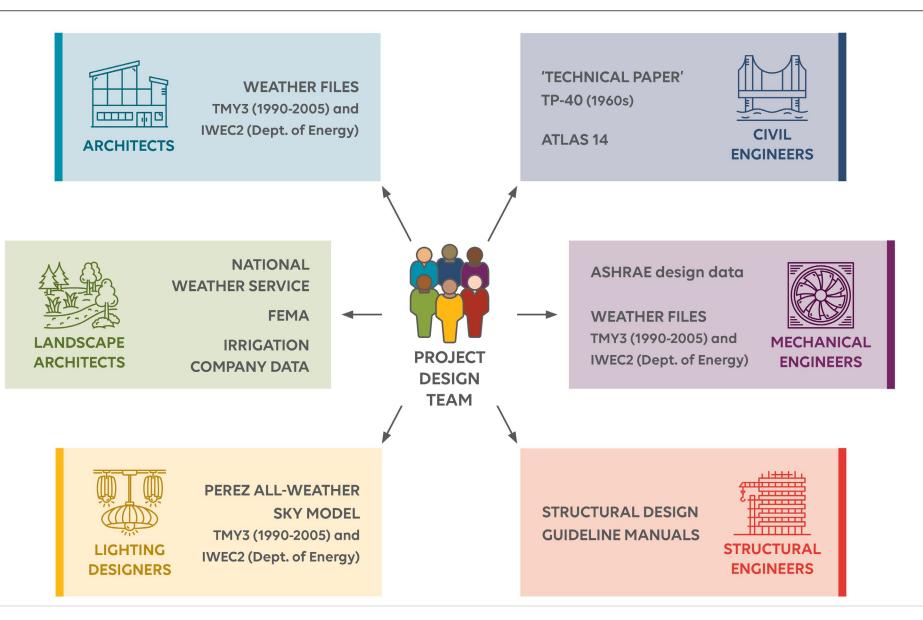


# Presenters

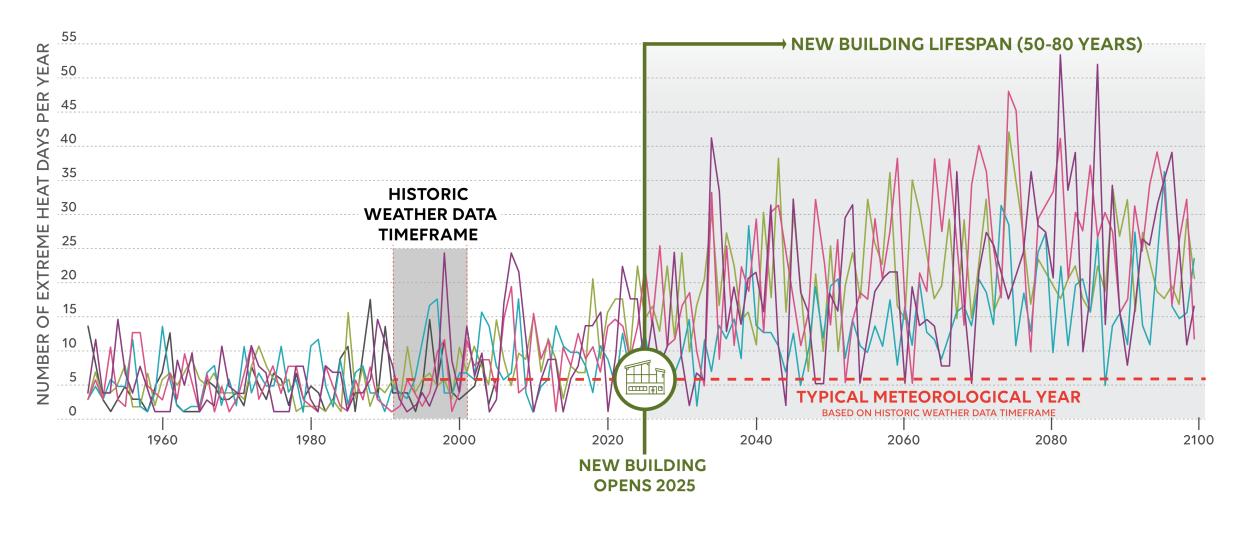

Heidi Roop

Ariane Laxo Liz Kutschke University of Minnesota Climate Adaptation Partnership (MCAP) HGA University of Minnesota Center for Sustainable Building Research

1.CURRENT STATE: HOW CLIMATE PROJECTION DATA IS(N'T) USED IN BUILDING ARCHITECTURE & ENGINEERING


2.SB2030 & CLIMATE PROJECTION DATA

# CURRENT STATE: HOW CLIMATE PROJECTION DATA IS(N'T) USED IN BUILDING ARCHITECTURE & ENGINEERING




|  | USE CASE                              | WORKFLOW                                                                          | SOFTWARE                                                                                                  |
|--|---------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|  | CLIMATE/<br>SITE ANALYSIS             | Climate Data Visualization<br>Future Weather Data<br>Energy Sensitivity Study     | Climate Consultant<br>LadyBug for Grasshopper<br>WeatherShift (Arup/Argos Analytics)<br>CCWorldWeatherGen |
|  | BUILDING<br>ORIENTATION & FORM        | Building/Massing<br>Orientation                                                   | Sefaira Architecture<br>Insight360<br>IES VE                                                              |
|  | SOLAR<br>IRRADIATION                  | Detrimental vs. Beneficial<br>Facade Radiation Analysis<br>Shading for Peak Loads | Honeybee for Grasshopper<br>ClimateStudio<br>eQuest Schematic Design Ward<br>Neotool                      |
|  | DAYLIGHTING<br>& GLARE                | Natural Daylighting<br>Glare Analysis<br>Glazing Optimization                     | ArchSim<br>Open Studio<br>Commercial Fenestration (COMFEN)                                                |
|  | AIRFLOW<br>ANALYSIS                   | Computational<br>Fluid Dynamics<br>Bulk Air Flow                                  | cove.tool<br>CBE Thermal Comfort Tools<br>Flometrics<br>Dragonfly for Grasshopper                         |
|  | BUILDING<br>ENVELOPE                  | Hygrothermal Analysis<br>Thermal Bridging                                         | CoolVent<br>Bentley Tas<br>WUFI                                                                           |
|  | CONCEPTUAL ENERGY                     | Shoebox Energy Model                                                              | THERM<br>Flixo                                                                                            |
|  | HVAC &<br>RENEWABLES<br>HUMAN FACTORS | Conceptual HVAC Design<br>Renewable Energy<br>Feasibility<br>Occupant Comfort     | PVWatts<br>PVSyst<br>Helioscope<br>Xendee                                                                 |

## WHERE DO A&E PROFESSIONALS GET WEATHER DATA?



## RISKS OF USING HISTORIC WEATHER DATA FOR BUILDING DESIGN



MODELS: Observed Warm/Dry Cool/Wet Average Complement

Model location: Sacramento, CA with a daily maximum temperature above 103.9 °F and a medium emissions (RCP 4.5) scenario.
Source: Cal-Adapt. Data: LOCA Downscaled CMIP5 Climate Projections (Scripps Institution of Oceanography), Gridded Observed
Meteorological Data (University of Colorado Boulder), LOCA Derived Products (Geospatial Innovation Facility).

- - Typical meteorological year (TMY) based on historic weather data



"The words 'weather' and 'climate' are often incorrectly used interchangeably in building design and analysis." (Rao & Rastogi, 2020)

"Climate is the synthesis of weather events over the whole of a period statistically long enough to establish its statistical ensemble properties (mean value, variation, probabilities of extreme events, etc.) and is largely independent of any instantaneous events." (Essenwanger, 2001)


## **RESEARCH METHODOLOGY**



LITERATURE REVIEW

- 43 total sources:
   31 peer-reviewed papers
   12 industry sources
- Search terms included: Climate resilience, climate projection data, resilient design, adaptation planning





#### **ONLINE SURVEY**

- n = 144
- 27 U.S. States, Canada, and the United Kingdom
- Architects, Engineers, Planners, Sustainability Specialists, and other A&E roles

#### FOCUS GROUPS

- 4 focus groups, n = 14
- Architects, Engineers, Sustainability and Resiliency Specialists
- Intermediate and advanced climate projection data users

Sustainable design services do not generally include designing for climate change adaptation

Few firms are regularly using projections to inform design decisions Barriers to using climate projection data include lack of client requests, data gaps, and lack of expertise

Codes, standards, and training are needed

## 1. SUSTAINABLE DESIGN DOES NOT INCLUDE ADAPTATION

#### SERVICES OFFERED TO CLIENTS

Respondents could select all services offered by their companies. *n*=104

| SUSTAINABLE DESIGN                               | SELECTED BY <b>80</b> RESPONDENTS |
|--------------------------------------------------|-----------------------------------|
| THIRD PARTY CERTIFICATIONS                       | 66                                |
| BUILDING PERFORMANCE ANALYSIS AND MODELING       | 65                                |
| BUILDING DECARBONIZATION                         | 55                                |
| CLIMATE RESILIENCE/ADAPTATION PLANNING/DESIGN 52 |                                   |

### SUSTAINABILITY SERVICES

## CLIMATE SERVICES

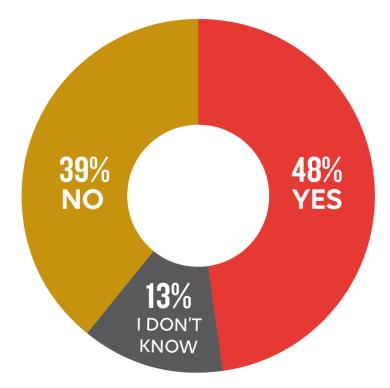
Professional services related to building performance analysis, triple bottom line sustainability, and/or climate change mitigation, typically using historic weather data. *Most often does not factor in the projected climate over the lifespan of the building, landscape, and systems.* 

- Sustainability planning
- Third-party certifications (ex: LEED, WELL)
- Passive Strategies
- Energy modeling
- Carbon neutral planning

Professional services related to climate change resilience and/or adaptation using climate projection data, factoring in the projected climate over the lifespan of the building, landscape, and systems.

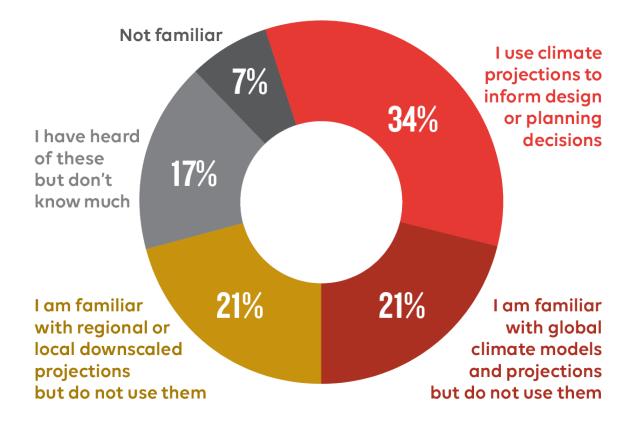
- Climate vulnerability assessment
- Climate risk assessment
- Climate resilience or adaptation planning
- Infrastructure resilience
- Stress testing the design against climate projections

## 1. SUSTAINABLE DESIGN DOES NOT INCLUDE ADAPTATION




...we're running energy models on every project using historic weather data. So we're making decisions...energy efficiency measurements, based on data that could be wrong. Sustainable design services do not generally include designing for climate change adaptation Few firms are regularly using projections to inform design decisions

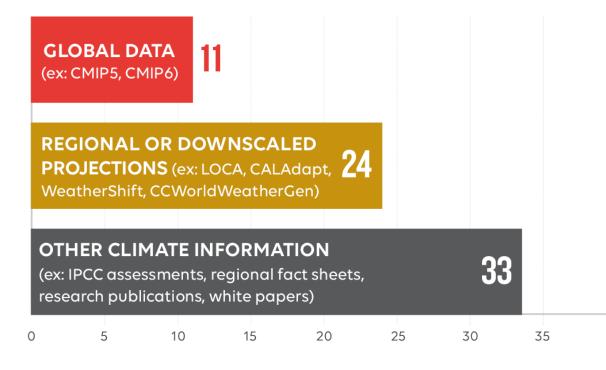
Barriers to using climate projection data include lack of client requests, data gaps, and lack of expertise


Codes, standards, and training are needed

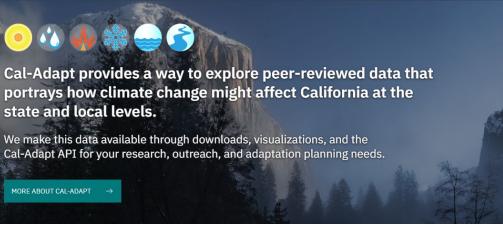
DOES YOUR ORGANIZATION USE CLIMATE PROJECTION DATA/INFORMATION IN ANY OF ITS WORK/SERVICES? n=106



#### WHAT IS YOUR PERSONAL FAMILIARITY WITH CLIMATE PROJECTION DATA/INFORMATION?

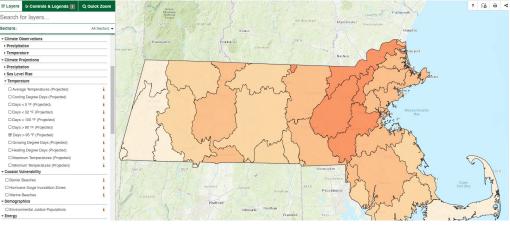

n=106




#### FIGURE 3

# WHAT TYPE(S) OF CLIMATE PROJECTION DATA ARE USED?

n=44




#### cal-adapt





40



40

#### FIGURE 4

HOW ARE CLIMATE PROJECTION DATA BEING USED?

n=44

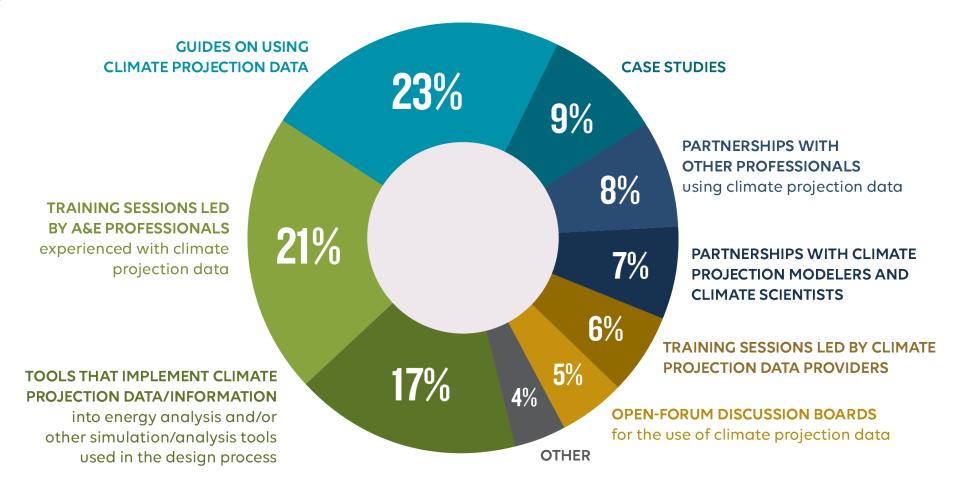
| NFORM C<br>about hazar |           |         |              | LIENTS  | 33          |
|------------------------|-----------|---------|--------------|---------|-------------|
| NFORM C                | LIMATE    | RISK AS | SESSME       | NTS     | 33          |
| NFORM SI               | TE/BUIL   | DING DI | ESIGN ST     | RATEGIE | s <b>33</b> |
| YSTEM SI               | ZING      |         |              | 27      |             |
| NPUT INTO              | O SUST. / | ANALYS  | IS TOOLS     | s 24    |             |
|                        | O ENERC   | IY MOD  | el <b>23</b> |         |             |
|                        |           |         |              |         |             |



[We use climate projection data] just to understand...what...changes in heating and cooling loads that we're looking at here...like order of magnitude...understanding that there are high error bars still on a lot of these projections... Sustainable design services do not generally include designing for climate change adaptation Few firms are regularly using projections to inform lesign decisions Barriers to using climate projection data include lack of client requests, data gaps, and lack of expertise

Codes, standards, and training are needed

| <b>BARRIERS TO USING CLIMATE PROJEC</b><br>Respondents could select up to three.                                                                                                     | TION DATA | Data are not in the format(s) used by building analysis/design tools                                                                            | <b>8.5</b> % |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| n=87<br>Our clients aren't asking for climate<br>projection data                                                                                                                     |           | Interpreting the output of these<br>products/services (ex: what the data<br>means for design) requires special<br>knowledge that we do not have | <b>7.9</b> % |
| Don't know what products/services <b>10.3%</b>                                                                                                                                       |           | Aware of these products/services,<br>but don't know how to use them                                                                             | <b>7.5</b> % |
| We would need to hire an individual<br>or team to have capacity for<br>these services10.3%Liability concerns with using<br>climate projection data to inform<br>design decisions9.4% |           | Using climate projection data/<br>information is not part of the<br>standard of care                                                            | 6.6%         |
|                                                                                                                                                                                      |           | Other                                                                                                                                           | 8.5%         |


Sustainable design services do not generally include designing for climate change adaptation Few firms are regularly using projections to inform lesign decisions Barriers to using climate projection data include lack of client requests, data gaps, and lack of expertise

Codes, standards, and training are needed

## 4. CODES, STANDARDS, AND TRAINING ARE NEEDED

#### **RESOURCES NEEDED TO GROW CLIMATE ADAPTATION EXPERTISE AND SERVICES IN A&E PRACTICE**

n=85



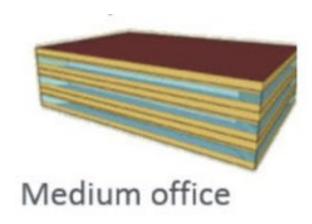
# SB2030 & CLIMATE PROJECTION DATA

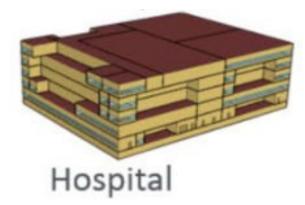


Current practice uses TMY files which are out of date, based on a limited number of years, and provide annual averages consistent with the long term (past) averages – typical conditions rather than extreme



Our group is testing a new methodology for creating both historic and future weather files to be used when considering resilient design practices and the future of buildings as the climate continues to change


## TYPICAL HISTORICAL YEAR FILE

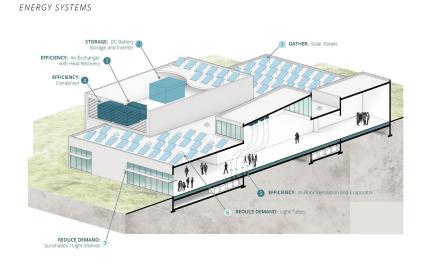

- A TMY-style file assembled from monthly historic data that shows the smallest deviation from historic means for data points listed
- Months selected range from 1995-2013
- TMY3 file will be developed based on existing method
- Typical historic year file will be tested against historic simulations and existing TMY3 file for MSP airport, bias correction will be applied as needed

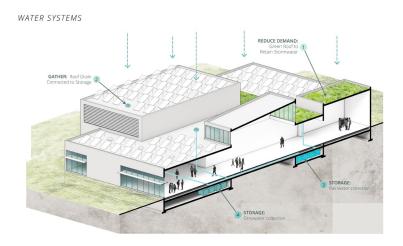
| DATA POINTS                                      |
|--------------------------------------------------|
| Dry Bulb Temperature                             |
| Dew Point Temperature                            |
| Relative Humidity                                |
| Atmospheric Pressure                             |
| Horizontal Infrared Radiation Intensity from Sky |
| Direct Normal Radiation                          |
| Diffuse Horizontal Radiation                     |
| Wind Direction                                   |
| Wind Speed                                       |
| Present Weather Observation                      |
| Present Weather Codes                            |
| Snow Depth                                       |
| Liquid Precipitation Depth                       |

## FUTURE REPRESENTATIVE FILES AND PROTOTYPE TESTING

- Fine-scaled global climate projections will be applied to the historic file to create a highly localized future representative file that can be used in energy simulation
- At least two building types will be simulated with historic and future representative files to assess how buildings may perform in the future and what considerations for resilience can and should be made now
  - Medium sized office building, representing externally load driven buildings
  - Large hospital building, representing internally load driven buildings
- Multiple versions of each building will be tested to test how strategies employed for energy efficiency may impact the resilient outcomes of buildings
  - Code baseline
  - Optimized envelope design
  - Optimized mechanical design
  - High performance







DOE Commercial Prototype Buildings, NREL

## FUTURE REPRESENTATIVE FILES AND SB2030

- Goal to create future representative files for all regions of the state that will be integrated into the SB 2030 Energy Standard Tool for project team use to:
  - Set resilience goal(s)
  - Identify resilience measures to support the goal(s)
  - Test building performance in representative future conditions
  - Test impact of strategies for energy efficiency on resilience goals
  - Test impact of strategies for resilience on energy efficiency

 Certain building types and uses may have prescriptive requirements based on modeling study





# Contact Us

Ariane Laxo Heidi Roop, PhD Liz Kutschke <u>alaxo@hga.com</u> <u>hroop@umn.edu</u> <u>kutsc009@umn.edu</u>