Moisture Risk and Heat Loss Analysis
For Wall Assemblies and Junctions
Center for Sustainable Building Research

Moisture Risk & Heat Loss Analysis
10/10/2019
Affordable Housing – Advanced Enclosure Systems

Affordable, high-performance, moisture-managed building enclosure system

Assembly of a studless panel house.

Layers of the studless “SEP-ETMMS” wall assembly

Structure complete.

Water/air/vapor control membrane applied.

Insulation, furring, and cladding installed.
Moisture Risk & Heat Loss Analysis Workshop – Day 1

1. New B3 Requirements for I.2 Moisture and Water Control
2. Building Science Review
3. Qualitative Moisture Assessment
4. Quantitative Moisture Analysis (Glaser, WUFI)
5. Summary and Recap
6. Working with Permeance & Permeability
7. Qualitative Moisture Assessment Practice
8. Glaser Analysis Walk-through and Practice
9. WUFI Analysis Walk-through and Practice

LUNCH BREAK
B3 Requirements - I.2 Moisture and Water Control

Intent: Ensure a moisture-safe building enclosure.

Requirements:

Part A Bulk Water

Part B Moisture Safe Design

Part C Moisture Safe Construction
B3 Requirements - I.2 Moisture and Water Control

Intent: Ensure a moisture-safe building enclosure.

Requirements:

Part A Bulk Water => Based on previous guideline
1) Site grading - 5% slope for 10 ft
2) Downspout leaders, trench drains, etc direct water away from building
3) Irrigation systems – ensure no spray on building enclosure

Part B Moisture Safe Design => Significant new requirements for designers

Part C Moisture Safe Construction => Significant new requirements for contractors
Intent: Ensure a moisture-safe building enclosure.

Requirements:

Part A Bulk Water => Based on previous guideline
1) Site grading - 5% slope for 10 ft
2) Downspout leaders, trench drains, etc direct water away from building
3) Irrigation systems – ensure no spray on building enclosure

Part B Moisture Safe Design => Significant new requirements for designers
1) Qualitative moisture assessment
2) Quantitative moisture assessment

Part C Moisture Safe Construction => Significant new requirements for contractors
1) Whole building airtightness test (or)
2) 3rd party building enclosure consultant
Part B Moisture Safe Design

1) Qualitative moisture assessment (roof and wall)
 A thorough description of the design intent and placement of control layers for:
 - Bulk water, capillary wetting, and storage
 - Air leakage
 - Diffusion
 - Thermal transfer
 Description of sheathing drying direction, ratio of exterior/interior R-values, etc.

2) Quantitative moisture assessment (wall)
 - Glaser analysis (static dewpoint and vapor drive assessment)
 (or)
 - WUFI analysis (dynamic risk assessment)
B3 Requirements - 1.2 Moisture and Water Control

Part C Moisture Safe Construction (choose #1 or #2)

1) Whole building airtightness test
 Building thermal envelope must be tested according to ABAA Standard Method for Building Enclosure Airtightness Compliance Testing,
 - Maximum air leakage rate is 0.25 cfm/sf enclosure area at 75Pa
 - Non-destructive remediation steps are required for any enclosure above this level

2) 3rd party building enclosure consultant
 A 3rd party enclosure consultant shall be used during the design and construction phases with scope of work including at a minimum:
 - Regular meetings with design and construction teams
 - Review of all technical plans, specifications, shop drawings, and material submittals related to building enclosure
 - Coordination of preconstruction training for enclosure contractors focused on air and water barrier installation
 - Coordination of air and water leakage testing on windows installation
 - Field observation
Reason for significant new requirements: As we push the performance of the enclosure higher, mold growth risk can increase.
Section 1 – Building Science Review

What is the function of the building enclosure?
Section 1 – Building Science Review

What is the function of the building enclosure?

- Structural Strength + Occupant Safety
- Environmental Separation (HAM + solar radiation)
- Durability + Sustainability
- Aesthetics
Section 1 – Building Science Review

Moisture safety = balance between wetting, drying, and safe moisture storage

In general, drying potential of an envelope must be greater than its wetting potential over the course of a year.

Wetting may overcome drying at times, if there is storage capacity to hold the moisture until drying conditions return.
Section 1 – Building Science Review

arranged in order of significance - **Wetting pathways**

- Bulk water leakage
- Capillary movement
- Air leakage
- Diffusion
Section 1 – Building Science Review

Drying pathways – arranged in order of significance

- Bulk water leakage
- Capillary movement
- Air leakage
- Diffusion

- Drainage
- Wicking, Hygric redistribution
- Ventilation and Evaporation
- Diffusion
How do we control these two in a modern wall?

- Drainage
- Wicking, Hygric redistribution
- Ventilation and Evaporation
- Diffusion

Bulk water leakage
Capillary movement
Air leakage
Diffusion
Section 1 – Building Science Review

...Drainage cavity behind cladding, with ventilation

1) Allows any water leakage that does happen to drain out of the assembly.
2) Stops capillary moisture drive.
3) Ventilation aids evaporation and removes moisture.

Image credit – CEI Composite Materials
Section 1 – Building Science Review

How do we control these two for a wall?

- Drainage
- Wicking, Hygric redistribution
- Ventilation and Evaporation
- Diffusion

Bulk water leakage
Capillary movement
Air leakage
Diffusion
Section 1 – Building Science Review

...Frequently 6 mil poly

1) Poly is most often used as both the vapor retarder AND air barrier
2) Not a durable product - frequently punctured
3) Difficult to install in an airtight manner
4) More impermeable than is really needed – can restrict diffusion drying
Air Leakage vs. Diffusion
Air leakage has the potential to introduce many times more water into a wall than diffusion.

Controlling air leakage is important not just for energy savings, but for the long term moisture durability of highly-insulated envelopes.
Air Leakage vs. Diffusion

Air leakage has the potential to introduce many times more water into a wall than diffusion.

Controlling air leakage is important not just for energy savings, but for the long term moisture durability of highly-insulated envelopes.

Where does all this water go?
- Some escapes with the air
- In the winter, much of it “condenses” on the first cold surface, typically the sheathing.
Section 1 – Building Science Review

In reality, condensation only happens on the surface of “hygrophobic” materials like glass, metal, tile, etc.

Actual condensation on wood building materials is rarely observed...

...but we will continue to use the term “condensation” since it implies the importance of maintaining the sheathing above the dew point.
Section 1 – Building Science Review

In fact, moisture is “adsorbed” by the surface of a hygrophilic material (such as wood), then is wicked deeper into the material until it becomes saturated.

Adsorption happens as a molecular layer of liquid forms on the surface and in the material’s pores.
After bulk water leakage, capillary movement, and air leakage are controlled, diffusion wetting and drying should be considered. It can be the most confusing topic.

Diffusion is the transport of water vapor through a material, molecule by molecule, driven by difference in vapor pressure.
Section 1 – Building Science Review

After bulk water leakage, capillary movement, and air leakage are controlled, diffusion wetting and drying should be considered.

Here are some basic rules for cold climates:
1) A class I or II warm side vapor retarder is required in most cases

<table>
<thead>
<tr>
<th>Impermeable</th>
<th>Semi-impermeable</th>
<th>Semi-permeable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I (0.1 perm or less)</td>
<td>Class II (> 0.1 perm to 1 perm)</td>
<td>Class III (> 1 perm to 10 perms)</td>
</tr>
</tbody>
</table>

- 6 mil poly
- metal foil
- rubberized membranes
- vapor retarder paint
- OSB (dry)
- 1 inch XPS foam
- Kraft paper
- latex paint
- plywood (dry)
- 1 inch closed cell SPF
- 1 inch EPS foam
- roofing felt
- grade D bldg. paper (dry)
Section 1 – Building Science Review

Here are some basic rules for cold climates:

1) A class I or II warm side vapor retarder is required in most cases
2) Don’t create a “vapor sandwich”

Norwegian building code requires exterior layers of sheathing and insulation to be 10x more vapor permeable than the warm side vapor retarder. This is to encourage outward drying (which is probably the easiest approach in cold climates).
Section 1 – Building Science Review

Testing the 10x guideline...

If 6 mil poly (0.1 perms) is used as the warm side vapor retarder, can 1 inch of exterior XPS (pink or blue foam) be applied?
Section 1 – Building Science Review

Testing the 10x guideline...

If 6 mil poly (0.1 perms) is used as the warm side vapor retarder, can 1 inch of exterior XPS (pink or blue foam) be applied?

• 1 inch of exterior XPS (1.0 perms) is 10 x more vapor open – PASS/FAIL
Section 1 – Building Science Review

Testing the 10x guideline...

If 6 mil poly (0.1 perms) is used as the warm side vapor retarder, can 1 inch of exterior EPS (white Styrofoam) be applied?
Section 1 – Building Science Review

Testing the 10x guideline...

If 6 mil poly (0.1 perms) is used as the warm side vapor retarder, can 1 inch of exterior EPS (white Styrofoam) be applied?

• 1 inch of exterior XPS (1.0 perms) is 10 x more vapor open – PASS/FAIL
• 1 inch of exterior EPS (3.0 perms) is 30x more vapor open - PASSSES
Section 1 – Building Science Review

Testing the 10x guideline...

If 6 mil poly (0.1 perms) is used as the warm side vapor retarder, can 1 inch of exterior foil-faced polyiso be applied?
Section 1 – Building Science Review

Testing the 10x guideline...

If 6 mil poly (0.1 perms) is used as the warm side vapor retarder, can 1 inch of exterior foil-faced polyiso be applied?

- 1 inch of exterior XPS (1.0 perms) is 10 x more vapor open – PASS/FAIL
- 1 inch of exterior EPS (3.0 perms) is 30x more vapor open - PASSES
- 1 inch of foil faced polyiso (0.05 perms) is less permeable than the poly - FAILS!
Section 1 – Building Science Review

Testing the 10x guideline...

If 6 mil poly (0.1 perms) is used as the warm side vapor retarder, can 1 inch of exterior mineral wool be applied?

• 1 inch of exterior XPS (1.0 perms) is 10 x more vapor open – PASS/FAIL
• 1 inch of exterior EPS (3.0 perms) is 30x more vapor open - PASSES
• 1 inch of foil faced polyiso (0.05 perms) is less permeable than the poly – FAILS!
• 1 inch of mineral wool (100 perms) is 1000x more vapor open- PASSES (easily)
Section 1 – Building Science Review

Testing the 10x guideline...

If 6 mil poly (0.1 perms) is used as the warm side vapor retarder, can OSB be used as the exterior sheathing?

• 1 inch of exterior XPS (1.0 perms) is 10 x more vapor open – PASS/FAIL
• 1 inch of exterior EPS (3.0 perms) is 30x more vapor open - PASSES
• 1 inch of foil faced polyiso (0.05 perms) is less permeable than the poly – FAILS!
• 1 inch of mineral wool (100 perms) is 1000x more vapor open - PASSES

• OSB sheathing (1.0 perms) is exactly 10x more vapor open – PASSES
Moisture Risk & Heat Loss Analysis

Section 1 – Building Science Review

Testing the 10x guideline...

If 6 mil poly (0.1 perms) is used as the warm side vapor retarder, can fiberglass-faced gypsum board (like DensGlass Gold) sheathing be used?

- 1 inch of exterior XPS (1.0 perms) is 10 x more vapor open – PASS/FAIL
- 1 inch of exterior EPS (3.0 perms) is 30x more vapor open - PASSES
- 1 inch of foil faced polyiso (0.05 perms) is less permeable than the poly – FAILS!
- 1 inch of mineral wool (100 perms) is 1000x more vapor open- PASSES

- OSB sheathing (1.0 perms) is exactly 10x more vapor open – PASSES
- DensGlass Gold, fire-rated type X (18 perms) is 180x more vapor open – PASSES
Section 1 – Building Science Review

Testing the 10x guideline...

If 6 mil poly (0.1 perms) is used as the warm side vapor retarder, can OSB + exterior EPS be used together?

- 1 inch of exterior XPS (1.0 perms) is 10 x more vapor open – PASS/FAIL
- 1 inch of exterior EPS (3.0 perms) is 30x more vapor open - PASSES
- 1 inch of foil faced polyiso (0.05 perms) is less permeable than the poly – FAILS!
- 1 inch of mineral wool (100 perms) is 100x more vapor open- PASSES

- OSB sheathing (1.0 perms) is exactly 10x more vapor open – PASSES
- DensGlass Gold, fire-rated type X (18 perms) is 180x more vapor open – PASSES
- OSB sheathing + 1 inch of EPS (0.75 perms total) is 7.5x more vapor open - FAILS, but...

The addition of exterior rigid foam over sheathing is often a gray area that requires more analysis.
Section 1 – Building Science Review

If exterior foams are used:

1) An adequate amount should be used to meet R-value guidelines (keeps sheathing warm and helps prevent condensation in the wall cavity)
2) A more permeable warm-side vapor retarder should be used, class III, to allow the cavity to dry to the inside

Be advised:
In cold climates, a thin application of exterior foam puts the wall in “no-man’s land” – not enough exterior R-value to keep the sheathing warm and condensation free, but perhaps enough vapor resistance to create a cold side vapor retarder.
If exterior foams are used:

<table>
<thead>
<tr>
<th>Climate Zone</th>
<th>Class III vapor retarders permitted for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone Marine 4</td>
<td>Vented cladding over OSB</td>
</tr>
<tr>
<td></td>
<td>Vented cladding over plywood</td>
</tr>
<tr>
<td></td>
<td>Vented cladding over fiberboard</td>
</tr>
<tr>
<td></td>
<td>Vented cladding over [exterior] gypsum [sheathing]</td>
</tr>
<tr>
<td></td>
<td>Insulated [foam] sheathing with R-value ≥ R2.5 over 2x4 wall</td>
</tr>
<tr>
<td></td>
<td>Insulated [foam] sheathing with R-value ≥ R3.75 over 2x6 wall</td>
</tr>
<tr>
<td>Zone 5</td>
<td>Vented cladding over OSB</td>
</tr>
<tr>
<td></td>
<td>Vented cladding over plywood</td>
</tr>
<tr>
<td></td>
<td>Vented cladding over fiberboard</td>
</tr>
<tr>
<td></td>
<td>Vented cladding over [exterior] gypsum [sheathing]</td>
</tr>
<tr>
<td></td>
<td>Insulated [foam] sheathing with R-value ≥ R5 over 2x4 wall</td>
</tr>
<tr>
<td></td>
<td>Insulated [foam] sheathing with R-value ≥ R7.5 over 2x6 wall</td>
</tr>
<tr>
<td>Zone 6</td>
<td>Vented cladding over fiberboard</td>
</tr>
<tr>
<td></td>
<td>Vented cladding over [exterior] gypsum [sheathing]</td>
</tr>
<tr>
<td></td>
<td>Insulated [foam] sheathing with R-value ≥ R7.5 over 2x4 wall</td>
</tr>
<tr>
<td></td>
<td>Insulated [foam] sheathing with R-value ≥ R11.25 over 2x6 wall</td>
</tr>
<tr>
<td>Zones 7 and 8</td>
<td>Insulated [foam] sheathing with R-value ≥ R10 over 2x4 wall</td>
</tr>
<tr>
<td></td>
<td>Insulated [foam] sheathing with R-value ≥ R15 over 2x6 wall</td>
</tr>
</tbody>
</table>

IECC 2007, table 402.5.1
Section 1 – Building Science Review

We’ve been talking about: **Control Layers**

- Water Barrier
- Air Barrier
- Vapor Retarder
- Thermal Barrier
Section 1 – Building Science Review

We’ve been talking about: **Control Layers**

Water Barrier – “physics first (slope, weatherlap, capillary break), chemistry second” (sealants, tapes, coatings). High *water* resistance is key, but *vapor* resistance is variable (e.g. Gore-tex)
We’ve been talking about: **Control Layers**

Air Barrier – Ability to resist air pressure is key. 100% continuity is vital. Vapor resistance can be variable. Think carefully about its location in the wall cross section and the possibility for air flow within the cavity.
We’ve been talking about:

Control Layers

Vapor Retarder – Vapor resistance is still variable. Needs to be chosen according to climate (direction of vapor drive), location in the wall assembly, and design intent (e.g. desired drying direction).

Continuity is less important:
A 99% continuous vapor retarder is 99% effective.
Section 1 – Building Science Review

We’ve been talking about: **Control Layers**

Thermal Barrier – Low thermal conductivity is key. Continuity is also important (no thermal bridges).

Ratio of exterior insulation to interior insulation plays a huge role in the moisture dynamics of the wall assembly.
Section 1 – Building Science Review

The Perfect Wall – Wall design simplified!

1) All control layers to the exterior of the structure
2) Structure is kept warm and dry
3) Air barrier, water barrier, and vapor retarder can be combined into one layer
4) Those control layers are protected by the insulation and application is simplified
5) Works in any climate zone
Section 2 – Qualitative Moisture Assessment

How is the assembly *designed* to handle moisture?
Section 2 – Qualitative Moisture Assessment

How is the assembly designed to handle moisture?

There are a few steps to a qualitative moisture assessment:

1) Describe how the assembly is designed to handle bulk water
2) Describe how the assembly is designed to control air leakage
3) Describe how the assembly is designed control diffusion
4) Describe how the assembly is designed to control heat flow
5) Describe how the assembly is designed to dry (drying direction)

Evaluate the design, constructability, and long-term durability
How is the assembly designed to handle moisture?

There are a few steps to a qualitative moisture assessment:

1) Describe how the assembly is designed to handle bulk water
 - Identify the water control layer. Does it rely on perfection? (i.e. face-sealed cladding or caulk)
 - Are there redundancies built into the assembly?
 - Does the assembly have safe moisture storage potential?
 - Is the water control layer durable and protected from damage functions (extreme temps, solar radiation, etc?)
 - Is a drainage gap/capillary break provided?
Section 2 – Qualitative Moisture Assessment

How is the assembly *designed* to handle moisture?

There are a few steps to a qualitative moisture assessment:

2) Describe how the assembly is designed to control air leakage
 • **Identify the air control layer.** Can it be installed easily in a continuous fashion?
 • Is the air barrier a durable (or fragile) material?
 • Is the air barrier protected from damage functions?
 • Is it located in the right place in the assembly?
Section 2 – Qualitative Moisture Assessment

How is the assembly *designed* to handle moisture?

There are a few steps to a qualitative moisture assessment:

3) Describe how the assembly is designed control diffusion
 • Identify the vapor control layer. For cold climates, is it on the warm side?
 • Does the assembly avoid creating a vapor sandwich?
 • Do interior layers of the assembly have an adequately high drying potential, or is the assembly very impermeable in both directions?
Section 2 – Qualitative Moisture Assessment

How is the assembly *designed* to handle moisture?

There are a few steps to a qualitative moisture assessment:

4) Describe how the assembly is designed to control heat flow

- Identify the thermal control layer.
 Is it continuous or are there uninsulated spots where condensation could occur?
- Does the insulation help protect control layers from damage functions?
- Does the insulation help keep the sheathing and structure warm and dry?
Section 2 – Qualitative Moisture Assessment

Introducing 3 (High Performance) Multifamily Wall Types:

2x6 w ccSPF and Enduramax

6” SIP w brick

2x8 w cellulose and fiber cement
Section 2 – Qualitative Moisture Assessment

2x6 with ccSPF and Enduramax

Water control: Drained and screened
- brick cladding sheds bulk water
- drainage gap built into backside of EPS
- WRB is liquid-applied 3M 2085VP

System has good redundancy
WRB is protected from damage functions
Drainage gap provides capillary break

But little water storage potential

Overall: 😊

<table>
<thead>
<tr>
<th>Material</th>
<th>λ[W/(m·K)]</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick (R-0.1/inch)</td>
<td>1.312</td>
<td>0.900</td>
</tr>
<tr>
<td>Dens Glass Gold</td>
<td>0.161</td>
<td>0.900</td>
</tr>
<tr>
<td>EPS Type VIII (R-4/inch)</td>
<td>0.036</td>
<td>0.900</td>
</tr>
<tr>
<td>Gypsum board</td>
<td>0.161</td>
<td>0.900</td>
</tr>
<tr>
<td>Luftschicht, ruhend, horizontal, Dicke 13 mm</td>
<td>0.080</td>
<td></td>
</tr>
<tr>
<td>ccSPF (R-6.7/inch)</td>
<td>0.021</td>
<td>0.900</td>
</tr>
</tbody>
</table>
Section 2 – Qualitative Moisture Assessment

2x6 with ccSPF and Enduramax

Air control: ccSPF plus exterior air barrier
- liquid-applied 3M 2085VP
- closed cell spray foam in stud cavities

System has good redundancy
3M 2085 can be applied in continuous fashion and is well-protected
ccSPF is a very durable air barrier
Location of primary air barrier on exterior of sheathing works well *with air-impermeable cavity insulation*

<table>
<thead>
<tr>
<th>Material</th>
<th>λ[W/(m·K)]</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick (R-0.1/inch)</td>
<td>1.312</td>
<td>0.900</td>
</tr>
<tr>
<td>Dens Glass Gold</td>
<td>0.161</td>
<td>0.900</td>
</tr>
<tr>
<td>EPS Type VIII (R-4/inch)</td>
<td>0.036</td>
<td>0.900</td>
</tr>
<tr>
<td>Gypsum board</td>
<td>0.161</td>
<td>0.900</td>
</tr>
<tr>
<td>Luftschicht, ruhend, horizontal, Dicke: 13 mm</td>
<td>0.080</td>
<td></td>
</tr>
<tr>
<td>ccSPF (R-6.7/inch)</td>
<td>0.021</td>
<td>0.900</td>
</tr>
</tbody>
</table>

Overall: 😊
Section 2 – Qualitative Moisture Assessment

2x6 with ccSPF and Enduramax

Drying Strategy/Direction:
Which way does the sheathing dry?

<table>
<thead>
<tr>
<th>Material</th>
<th>λ [W/(m·K)]</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick (R-0.1/inch)</td>
<td>1.312</td>
<td>0.900</td>
</tr>
<tr>
<td>Dens Glass Gold</td>
<td>0.161</td>
<td>0.900</td>
</tr>
<tr>
<td>EPS Type VIII (R-4/inch)</td>
<td>0.036</td>
<td>0.900</td>
</tr>
<tr>
<td>Gypsum board</td>
<td>0.161</td>
<td>0.900</td>
</tr>
<tr>
<td>Luftschicht, ruhend, horizontal, Dicke: 13 mm</td>
<td>0.080</td>
<td></td>
</tr>
<tr>
<td>ccSPF (R-6.7/inch)</td>
<td>0.021</td>
<td>0.900</td>
</tr>
</tbody>
</table>
Section 2 – Qualitative Moisture Assessment

2x6 with ccSPF and Enduramax

Drying Strategy/Direction:

Which way does the sheathing dry?

Primary vapor retarder is ccSPF at 0.3 perms
Exterior layers of gypsum sheathing and 3M 2085 are vapor open, but EPS + brick is only 3.5x more vapor open than the ccSPF (approx. 1 perm)
Exterior foam is not thick enough to move the sheathing “inside”

Sheathing primarily dries to the outside, but Enduramax product muddles this strategy somewhat. Overall: 😐
Section 2 – Qualitative Moisture Assessment

2x6 with ccSPF and Enduramax

Vapor control: ccSPF
- closed cell spray foam in stud cavities

Vapor control is on warm side
Exterior layers of gypsum sheathing and 3M 2085 are vapor open, but EPS + brick is only 3.5x more vapor open than the ccSPF
Sheathing is located between two semi-impermeable layers, but has some relief thanks to drainage gap

Overall: 😞
Section 2 – Qualitative Moisture Assessment

2x6 with ccSPF and Enduramax

Thermal control: ccSPF plus Enduramax
- closed cell spray foam in stud cavities
- exterior EPS

Spray foam fills cavities completely and exterior EPS help eliminate cold spots/thermal breaks

Exterior insulation helps protect primary air and water barrier

Exterior EPS (2 inches, R-8) is too thin to keep sheathing and structure above dew point during winter conditions

Overall: 😊/😊
Section 2 – Qualitative Moisture Assessment

2x6 with ccSPF and Enduramax

<table>
<thead>
<tr>
<th>Material</th>
<th>λ [W/(m·K)]</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick (R-0.1/inch)</td>
<td>1.312</td>
<td>0.900</td>
</tr>
<tr>
<td>Dens Glass Gold</td>
<td>0.161</td>
<td>0.900</td>
</tr>
<tr>
<td>EPS Type VIII (R-4/inch)</td>
<td>0.036</td>
<td>0.900</td>
</tr>
<tr>
<td>Gypsum board</td>
<td>0.161</td>
<td>0.900</td>
</tr>
<tr>
<td>Luftsicht, ruhend, horizontal, Dicke: 13 mm</td>
<td>0.080</td>
<td></td>
</tr>
<tr>
<td>ccSPF (R-6.7/inch)</td>
<td>0.021</td>
<td>0.900</td>
</tr>
</tbody>
</table>

Overall:
- Water control: ☺
- Air control: ☺
- Vapor control: ☹
- Thermal control: ☺/☺
- Drying strategy: (outward drying) ☹
Section 2 – Qualitative Moisture Assessment

6 inch SIP with brick

<table>
<thead>
<tr>
<th>Material</th>
<th>λ [W/(m·K)]</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick (R-0.1/inch)</td>
<td>1.312</td>
<td>0.900</td>
</tr>
<tr>
<td>Dens Glass Gold</td>
<td>0.161</td>
<td>0.900</td>
</tr>
<tr>
<td>EPS Type VIII (R-4/inch)</td>
<td>0.036</td>
<td>0.900</td>
</tr>
<tr>
<td>Gypsum board</td>
<td>0.161</td>
<td>0.900</td>
</tr>
<tr>
<td>Luftschicht, ruhend, horizontal, Dicke: 45 mm</td>
<td>0.250</td>
<td></td>
</tr>
<tr>
<td>OSB</td>
<td>0.097</td>
<td>0.900</td>
</tr>
</tbody>
</table>

Overall:
Water control: drained and screened
Air control: SIP panel w tape/spray foam
Vapor control: SIP panel (semi-impermeable and symmetric)
Thermal control: SIP panel (reduced thermal bridging)

Drying Strategy: Bi-directional drying

Moisture Risk & Heat Loss Analysis
10/10/2019
Section 2 – Qualitative Moisture Assessment

6 inch SIP with brick

Overall:
Water control: 😊
Air control: 😊
Vapor control: 😞
Thermal control: 😞
Drying strategy: (bi-directional drying) 😊

<table>
<thead>
<tr>
<th>Material</th>
<th>λ [W/(m·K)]</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick (R-0.1/inch)</td>
<td>1.312</td>
<td>0.900</td>
</tr>
<tr>
<td>Dens Glass Gold</td>
<td>0.161</td>
<td>0.900</td>
</tr>
<tr>
<td>EPS Type VIII (R-4/inch)</td>
<td>0.036</td>
<td>0.900</td>
</tr>
<tr>
<td>Gypsum board</td>
<td>0.161</td>
<td>0.900</td>
</tr>
<tr>
<td>Luftschicht, ruhend, horizontal, Dicke: 45 mm</td>
<td>0.250</td>
<td></td>
</tr>
<tr>
<td>OSB</td>
<td>0.097</td>
<td>0.900</td>
</tr>
</tbody>
</table>
Section 2 – Qualitative Moisture Assessment

2x8 with cellulose and fiber cement

Overall:

Water control: no drainage gap, but cellulose has large moisture storage/redistribution potential

Air control: 6mil poly & dense pack cellulose

Vapor control: 6 mil poly and 1 inch exterior XPS (possible vapor sandwich)

Thermal control: exterior XPS (R-5) reduces thermal bridging but is too thin to keep sheathing above dew point

Drying Strategy: Outward drying
Section 2 – Qualitative Moisture Assessment

2x8 with cellulose and fiber cement

Overall:

Water control: 😞
Air control: 😞/❌
Vapor control: 😞
Thermal control: 😞
Drying strategy: (outward drying) 😞

<table>
<thead>
<tr>
<th>Material</th>
<th>λ [W/(m K)]</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose</td>
<td>0.040</td>
<td>0.900</td>
</tr>
<tr>
<td>Dens Glass Gold</td>
<td>0.161</td>
<td>0.900</td>
</tr>
<tr>
<td>Fiber cement - Hardie board</td>
<td>0.301</td>
<td>0.900</td>
</tr>
<tr>
<td>Gypsum board</td>
<td>0.161</td>
<td>0.900</td>
</tr>
<tr>
<td>XPS</td>
<td>0.029</td>
<td>0.900</td>
</tr>
</tbody>
</table>
Section 2 – Qualitative Moisture Assessment

Which wall is the least moisture safe?:

2x6 w ccSPF and Enduramax

6” SIP w brick

2x8 w cellulose and fiber cement
Section 3 – Glaser Analysis

How is the assembly *designed* to handle condensation risk and diffusion?
Section 3 – Glaser Analysis

Start with condensation risk:

Calculate the temperature profile through a wall, 3 options for this:

1) Locate a calculator on line, search for “wall gradient calculator”
 http://cwc.ca/resources/wall-thermal-design/
2) Develop your own calculator
3) Use calculator that has been developed for the MN B3 program
Section 3 – Glaser Analysis

Calculate the temperature profile through a wall:

#1 R-value of each layer

<table>
<thead>
<tr>
<th>surfaces (from inside to outside)</th>
<th>R-value</th>
<th>fraction of total (additive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 inside air film</td>
<td>0.68</td>
<td>0.02</td>
</tr>
<tr>
<td>2 gypsum+latex paint+6mil poly</td>
<td>0.56</td>
<td>0.04</td>
</tr>
<tr>
<td>3 cellulose</td>
<td>26.83</td>
<td>0.83</td>
</tr>
<tr>
<td>4 DensGlas Gold + Tyvek</td>
<td>0.56</td>
<td>0.85</td>
</tr>
<tr>
<td>5 XPS</td>
<td>5.00</td>
<td>0.99</td>
</tr>
<tr>
<td>6 outside air film</td>
<td>0.17</td>
<td>1.00</td>
</tr>
<tr>
<td>total resistance value</td>
<td>33.8</td>
<td></td>
</tr>
</tbody>
</table>
Section 3 – Glaser Analysis

Calculate the temperature profile through a wall: #2 Temp at each surface

<table>
<thead>
<tr>
<th>Temperature Profiles - Dewpoint Locator</th>
<th>winter (design)</th>
</tr>
</thead>
<tbody>
<tr>
<td>surfaces (from inside to outside)</td>
<td></td>
</tr>
<tr>
<td>inside RH %</td>
<td>50%</td>
</tr>
<tr>
<td>inside temperature</td>
<td>68</td>
</tr>
<tr>
<td>1 inside air film</td>
<td>67.0</td>
</tr>
<tr>
<td>2 gypsum+latex paint+6mil poly</td>
<td>66.2</td>
</tr>
<tr>
<td>3 cellulose</td>
<td>27.1</td>
</tr>
<tr>
<td>4 DensGlas Gold + Tyvek</td>
<td>26.2</td>
</tr>
<tr>
<td>5 XPS</td>
<td>18.9</td>
</tr>
<tr>
<td>6 outside air film</td>
<td>18.7</td>
</tr>
<tr>
<td>outside temperature</td>
<td>18.7</td>
</tr>
<tr>
<td>outside RH%</td>
<td>75%</td>
</tr>
<tr>
<td>dewpoint temp</td>
<td>48.6</td>
</tr>
</tbody>
</table>

Typically, outside conditions are set to average winter temp and RH, estimate the likely average interior conditions (temp and RH)
Section 3 – Glaser Analysis

Calculate the temperature profile through a wall: #3 Graph profile
Section 3 – Glaser Analysis

Where a surface temperature is below the dewpoint, there is risk of condensation.
Section 3 – Glaser Analysis

The vapor profile is based on the temperature profile, but adds vapor resistance and pressure to each layer.

You need to know additional material properties:
1) the permeance (perms) of all membranes
2) the permeability (perm in) of all thick materials and air layers

Everything exterior of a vented/ventilated air gap is typically removed. (Effects of many cladding systems cannot be included.)
Section 3 – Glaser Analysis

Calculate the vapor profile through a wall: #1 Vapor resistance of each layer

<table>
<thead>
<tr>
<th>Wall Section Surfaces - vapor resistance, through insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>surfaces (from inside to outside)</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>1 inside air film</td>
</tr>
<tr>
<td>2 gypsum+latex paint+6mil poly</td>
</tr>
<tr>
<td>3 cellulose</td>
</tr>
<tr>
<td>4 DensGlas Gold + Tyvek</td>
</tr>
<tr>
<td>5 XPS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6 outside air film</td>
</tr>
<tr>
<td>total resistance value</td>
</tr>
</tbody>
</table>
Section 3 – Glaser Analysis

Calculate the vapor profile through a wall: #2 Vapor pressure at each surface

<table>
<thead>
<tr>
<th>Surfaces (from inside to outside)</th>
<th>Temp</th>
<th>Saturation vapor pressure (psi)</th>
<th>RH</th>
<th>Initial vapor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor air</td>
<td>68.0</td>
<td>0.3379</td>
<td>50%</td>
<td>0.1689</td>
</tr>
<tr>
<td>1-2 surface</td>
<td>67.0</td>
<td>0.3265</td>
<td></td>
<td>0.1689</td>
</tr>
<tr>
<td>2-3 surface</td>
<td>66.2</td>
<td>0.3173</td>
<td></td>
<td>0.0456</td>
</tr>
<tr>
<td>3-4 surface</td>
<td>27.1</td>
<td>0.0717</td>
<td></td>
<td>0.0451</td>
</tr>
<tr>
<td>4-5 surface</td>
<td>26.2</td>
<td>0.0693</td>
<td></td>
<td>0.0444</td>
</tr>
<tr>
<td>5-6 surface</td>
<td>18.9</td>
<td>0.0508</td>
<td></td>
<td>0.0377</td>
</tr>
<tr>
<td>Outdoor air</td>
<td>18.7</td>
<td>0.0503</td>
<td>75%</td>
<td>0.0377</td>
</tr>
</tbody>
</table>
Section 3 – Glaser Analysis

Calculate the vapor profile through a wall: #3 Graph profile

![Glaser Diagram - 2x8 w fiber cement](image)
Section 3 – Glaser Analysis

Where the initial vapor pressure is above the saturation vapor pressure, moisture will climb towards 100% RH: little risk in this case.
Section 3 – Glaser Analysis

Exterior ply of the SIP panel is below dewpoint – but what’s the risk?

Diagram: Dewpoint Locator - SIP w/ brick

- Temperature (F)
- Indoor air, 1-2 surface, 2-3 surface, 3-4 surface, 4-5 surface, 5-6 surface, 6-7 surface, Outdoor air

Graph notes:
- Inner OSB ply
- Outer OSB ply

Moisture Risk & Heat Loss Analysis
10/10/2019
Section 3 – Glaser Analysis

Exterior ply of the SIP panel is below dewpoint – but what’s the risk? – no cavity, no airflow, no available condensation plane in this case

![Dewpoint Locator - SIP w brick](image)

- **Inner OSB ply**
- **Outer OSB ply**

Moisture Risk & Heat Loss Analysis
10/10/2019
Section 3 – Glaser Analysis

Exterior ply of the SIP panel is above the saturation vapor pressure, moisture will climb towards 100% RH, elevated moisture risk
Section 3 – Glaser Analysis

Gypsum sheathing is below dewpoint – **but what’s the risk?** Has a cavity that’s filled with ccSPF, no available condensation plane in this case.

![Graph showing dewpoint locator with indoor air, surface temperature, and dewpoint levels.](image)
Section 3 – Glaser Analysis

Gypsum sheathing is very close to the saturation vapor pressure. Possible elevated moisture risk.
Section 4 – WUFI Analysis

How is the assembly *predicted to perform* in terms of moisture?
Section 4 – WUFI Analysis
Section 4 – WUFI Analysis

WUFI attempts to predict actual moisture levels in all layers of a wall (or roof) assembly by modeling almost all relevant forces and conditions dynamically, hour by hour.
Section 4 – WUFI Analysis

Hourly exterior environmental conditions including...

- Temperature
- Relative humidity
- Precipitation
- Solar radiation
- Wind
Section 4 – WUFI Analysis

Hourly interior environmental conditions including...

- Temperature
- Relative humidity
- Internal heat gains
- Internal moisture gains
- HVAC equipment
- Setpoints/schedules
- Ventilation rates
- Air leakage rates
Section 4 – WUFI Analysis

Building Conditions

- Orientation
- Inclination
- Height
- Rain exposure
- Shading

![Diagram showing orientation and inclination settings]

Building Height/Driving Rain Coefficients

- Rain load calculation according to ASHRAE Standard 160
- Rain exposure factor (FE): 1.2
- Building Height [m]: 10 and <20
- Exposure Category: Medium
- Rain deposition factor (FD): 0.5
- Walls below a low-slope roof

Note:
Rain Load = Rain * FE * FD * 0.2 s/m * Wind Velocity
Section 4 – WUFI Analysis

Material Properties – stored in large database of stock materials

- Density
- Heat conductivity
- Heat capacity
- Permeability
- Moisture storage
- Capillarity
- Others...
Section 4 – WUFI Analysis

Moisture dynamics possible to model
- Bulk water leakage
- Capillary drive
- Air leakage
- Diffusion
- Moisture storage
- Initial moisture conditions (wet building materials)
- Surface treatments (different moisture adsorption characteristics, colors, permeability, etc)

Dynamics not possible to model
- Convection
- 2D moisture flow (only clear wall sections are modeled)
Section 4 – WUFI Analysis

Air leakage rates specified in special air layers

Water leakage rates specified within certain material layers

“Monitors” set in critical layers to track conditions
There are many ways to analyze WUFI results.

MC $\geq 18\%$ is problematic for wood-based materials.

“Sustained” RH $\geq 80\%$ can initiate mold growth, but temp must be $> 32^\circ F$

3 years of results typical, to see trends
Section 4 – WUFI Analysis

For 2x8 w cellulose and fiber cement:

Despite exterior XPS, temps in sheathing are still frequently below freezing.

RH spikes in winter (sign of a wall that dries to the outside), but appears to be safely below 80% RH.
Section 4 – WUFI Analysis

For 6” SIP w/ brick:
Sheathing is colder w/out exterior foam, but...
RH is actually lower in sheathing thanks to vented cavity and lack of semi-impermeable XPS
(Recall, Glaser predicted worse performance)
Section 4 – WUFI Analysis

For 2x6 w ccSPF and Enduramax:
Sheathing is warmer thanks to exterior EPS (R-8)
RH is quite similar, slightly better than SIP
(Recall, Glaser predicted better performance than SIP too)
For a wall with 50% of R-value on the exterior (in climate zone 6):

Sheathing is almost always above 40F (roughly, the dewpoint)

Sheathing now dries to the inside – driest period is during the winter

The sheathing’s moisture level is now governed by interior conditions
Section 5 – 2D Thermal Analysis

How are intersections and details designed to limit condensation risk and heat loss?
Section 5 – 2D Thermal Analysis

How are intersections and details designed to limit condensation risk and heat loss?

2D Thermal modeling can provide analysis for:

1) True R-values of wall assemblies – more detail tomorrow
2) Heat loss of linear thermal bridges – more detail tomorrow
3) Condensation risk at complex junctions – more detail tomorrow
Section 5 – 2D Thermal Analysis

1) True R-values

Clear wall: R-24.4

Account for studs: R-13.6

\[U = 0.041 \text{ Btu/(h ft}^2\text{°F)} \]

\[U_{\text{studs}} = \frac{4.657}{27.389} = 0.17 W/(m^2\text{°K}) = 0.0737 \text{ Btu/(h ft}^2\text{°F)} \]
Section 5 – 2D Thermal Analysis

2) Linear Thermal Bridges

We can investigate heat loss from linear thermal bridges:
Where do these occur?

• Material and wall transitions
• Penetrations through insulation (flashing, furring, shelf angles)
• Assembly junctions (roof to wall, wall to floor, etc)
• Geometric effects (corners, misalignment of insulation layers)
2) Linear Thermal Bridges

The Psi value measures the heat flow impact of the extra framing, insulation alignment, and change of materials at the junction.

\[
\psi_{A-B} = \frac{\Phi}{\Delta T} = \frac{20.460}{30.000} \quad U_1 \cdot b_1 \cdot U_2 \cdot b_2 = \frac{0.150 \cdot 1.686}{0.264 \cdot 1.524} = 0.026 \text{ W/(m}^2\text{K)}
\]
3) Condensation Risk Analysis

The **dewpoint** can also be located within the assembly (usually determined for average winter conditions).

Indoor air at 70°F and 35% RH = **40°F** dewpoint

Is the sheathing above the dewpoint?
Is the rim board?
Section 5 – 2D Thermal Analysis

Use psychrometric chart to find the dewpoint for the expected winter interior air conditions

DBT: dry bulb temp.
WBT: wet bulb temp.
RH: relative humidity
DP: dew point
HR: humidity ratio
Available 2D Heat Flow Simulation Tools

1) THERM – free, has a large user base, but difficult to use

2) Flixo – a “modern” version of THERM with built-in tools, easy drawing interface, and automatic reporting capabilities. $344 - $1,960 (1yr subscription)

3) HT Flux – similar to Flixo, more difficult to use, but added functionality with dynamic boundary conditions and 2D glaser analysis for advanced users.

4) Psi-Therm, Heat2, others
The 4 Types of Moisture Risk Analysis

1) Qualitative moisture assessment

2) Static diffusion and condensation risk assessment (Glaser analysis)

3) Dynamic simulated hygrothermal performance (WUFI analysis)

4) 2D thermal modeling/detail analysis (Flixo/THERM)
The 4 Types of Moisture Risk Analysis

1) Qualitative moisture assessment

2) Static diffusion and condensation risk assessment (Glaser analysis)

3) Dynamic simulated hygrothermal performance (WUFI analysis)

4) 2D thermal modeling/detail analysis (Flixo/THERM) Not required in B3
The 4 Types of Moisture Risk Analysis

1) Summary – 2x8 w cellulose and fiber cement

<table>
<thead>
<tr>
<th></th>
<th>Qualitative</th>
<th>Glaser</th>
<th>WUFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water control:</td>
<td>☹</td>
<td>-</td>
<td>☹</td>
</tr>
<tr>
<td>Air control/condensation:</td>
<td>☹ / ☹</td>
<td>☹</td>
<td>☹</td>
</tr>
<tr>
<td>Vapor control:</td>
<td>☹</td>
<td>☺</td>
<td>☺</td>
</tr>
<tr>
<td>Thermal control:</td>
<td>☹</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Different tools provide different answers. Judgement is needed.
The 4 Types of Moisture Risk Analysis

1) Summary – 6” SIP with brick

<table>
<thead>
<tr>
<th></th>
<th>Qualitative</th>
<th>Glaser</th>
<th>WUFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water control:</td>
<td>🌟</td>
<td>-</td>
<td>🌟</td>
</tr>
<tr>
<td>Air control/condensation:</td>
<td>🌟</td>
<td>🥤</td>
<td>🌟</td>
</tr>
<tr>
<td>Vapor control:</td>
<td>😞</td>
<td>🥤</td>
<td>🌟</td>
</tr>
<tr>
<td>Thermal control:</td>
<td>😞</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Different tools provide different answers. Judgement is needed.
The 4 Types of Moisture Risk Analysis

1) Summary – 2x6 with ccSPF and Enduramax

<table>
<thead>
<tr>
<th></th>
<th>Qualitative</th>
<th>Glaser</th>
<th>WUFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water control:</td>
<td>😊</td>
<td>-</td>
<td>😊</td>
</tr>
<tr>
<td>Air control/condensation</td>
<td>😊</td>
<td>😞</td>
<td>😊</td>
</tr>
<tr>
<td>Vapor control:</td>
<td>😞</td>
<td>😊</td>
<td>😊</td>
</tr>
<tr>
<td>Thermal control:</td>
<td>😊-/😊</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Different tools provide different answers. Judgement is needed.
The 4 Types of Moisture Risk Analysis

1) Qualitative moisture assessment

👍 Encourages thoughtful analysis of all elements impacting moisture performance, and understanding of design intent (regarding moisture)

👍 Adds important considerations of material durability, constructability, and field experience (otherwise missed by models).

👎 Rarely provides definitive answers.
The 4 Types of Moisture Risk Analysis

2) Static diffusion and condensation risk assessment (Glaser analysis)

Offers simple comparisons between wall assemblies that can be used quickly during design phase to identify and reduce condensation and diffusion risks. It is a quick design tool.

- Only considers behavior at one set of conditions (a given temp and RH)

- Does not incorporate many important elements related to moisture behavior – water leakage, air leakage, and capillary drive

- Cannot model impacts of vented/ventilated cladding systems

- Does not predict ultimate moisture levels, safety, or failure
3) Dynamic simulated hygrothermal performance

Attempts to predict actual moisture levels through all layers of wall and roof assemblies, affording greater certainty regarding success or failure.

Can model almost the complete range of moisture drive mechanisms including rain, solar gains, bulk water leakage, air leakage, capillary drive, diffusion, and storage.

Dynamic, hour by hour modeling for a variety of climates can help pinpoint reasons and times of failures.

Basic simulations are easy to run, but accuracy requires knowledgeable, experienced users and more time to refine material properties.

There is still debate about the ultimate accuracy of WUFI, especially for cavity walls with possible air flow and roofs.
4) 2D Thermal modeling (Not required for B3)

👍 Analyzes heat loss and condensation risk at locations that aren’t considered with Glaser or WUFI analysis.

👍 These locations can often be the most critical, hard to manage locations in the enclosure in terms of moisture risk, heat loss, and thermal comfort.

👍 Thermal bridge heat loss can be an important component of energy modeling (accounting for 20 – 70% of total heat loss through walls)

👎 THERM and Flixo only offer static modeling of temperature conditions. Therefore, only dewpoint/condensation risk and heat loss are considered.